Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-13T02:16:17.675Z Has data issue: false hasContentIssue false

Oxidation Response and Coatings for Mo-Si-B Alloys

Published online by Cambridge University Press:  18 January 2011

J. H. Perepezko
Affiliation:
University of Wisconsin-Madison, Department of Materials Science & Engineering 1509 University Avenue, Madison, WI 53706 USA
R. Sakidja
Affiliation:
University of Wisconsin-Madison, Department of Materials Science & Engineering 1509 University Avenue, Madison, WI 53706 USA
Get access

Abstract

Mo-Si-B alloys respond to high temperature oxidation in two distinct stages. First, there is a transient stage with an initial high recession rate that corresponds to the evaporation of volatile MoO3 due to the oxidation of the molybdenum rich phases. The steady state stage of the oxidation begins when a borosilica layer that initiated in the transient period becomes continuous and protects the alloy from further rapid oxidation. Then, the oxidation rate is limited by oxygen diffusion through the borosilicate layer. In order to improve the oxidation performance of the Mo-Si-B alloys, it is necessary to minimize the transient stage. The three phases, Mo (solid solution), Mo3Si (A15) and Mo5SiB2 (T2), composing the Mo-Si-B alloys play different roles in the transient stage. The interaction of the three phases with a reduced microstructure scale can reduce considerably the transient oxidation stage. As a further approach to inhibit the transient stage, a kinetic biasing strategy has been developed to capitalize on the reactions between different phases to develop useful reaction products and alloy compositions that evolve toward a steady state of a compatible system. In order to achieve a compatible interface coating together with enhanced oxidation resistance, a pack cementation process has been adopted to apply diffusion coatings. Two areas are highlighted for successful coating applications on Mo-Si-B alloys and robust high temperature oxidation resistance: development of metal-rich silicide + borosilicide high-temperature coating and in-situ thermal-barrier + borosilica coatings.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Perepezko, J.H., Science, 326, 1068 (2009).Google Scholar
2. Dimiduk, D.M., Perepezko, J.H., MRS Bulletin, 28, 639 (2003).Google Scholar
3. Perepezko, J.H., Sakidja, R., Kumar, K.S., “Mo-Si-B Alloys for Ultrahigh Temperature Applications”, in Advanced Structural Materials: Properties, Design Optimization, and Applications, edited by Soboyejo, W. (CRC Press, Boca Raton, FL, 2007) p.437.Google Scholar
4. Perepezko, J.H., Sakidja, R., Kim, S., Dong, Z., Park, J.S., in Third International Symposium on Structural Intermetallics (ISSI-3), edited by Hemker, Kevin J. and Dimiduk, Dennis M., (TMS, Warrendale, PA, 2002) p.505.Google Scholar
5. Sakidja, R., Perepezko, J.H., J. Nuclear Materials, 366, 407 (2007).Google Scholar
6. Sakidja, R., Perepezko, J.H., Kim, S., Sekido, N., Acta Materialia, 56, 5223 (2008).Google Scholar
7. Schneibel, J.H., Ritchie, R.O., Kruzic, J.J., Tortorelli, P.F., Metallurgical and Materials Transactions A, 36, 525 (2005).Google Scholar
8. Kim, S., Perepezko, J.H., Journal of phase equilibria and diffusion, 27, 605 (2006).Google Scholar
9. Mendiratta, M.G., Parthasarathy, T.A., Dimiduk, D.M., Intermetallics, 10, 225 (2002).Google Scholar
10. Jéhanno, P., Heilmaier, M., Saage, H., Heyse, H., Böning, M., Kestler, H., Schneibel, J.H., Scripta Mater., 55, 525 (2006).Google Scholar
11. Jéhanno, P., Heilmaier, M., Kestler, H., Intermetallics, 12, 1005 (2004).Google Scholar
12. Jéhanno, P., Heilmaier, M., Kestler, H., Böning, M., Venskutonis, A., Bewlay, B., Metallurgical and Materials Transactions A, 36, 515 (2005).Google Scholar
13. Jéhanno, P., Heilmaier, M., Saage, H., Böning, M., Kestler, H., Freudenberger, J., Drawin, S., Mat. Sci. & Engr. A, 463, 216 (2007).Google Scholar
14. Krüger, M., Franz, S., Saage, H., Heilmaier, M., Schneibel, J.H., Jéhanno, P., Böning, M., Kestler, H., Intermetallics, 16, 933 (2008).Google Scholar
15. Supatarawanich, V., Johnson, D.R., Liu, C.T., Mat. Sci. & Engr. A, 344, 328 (2003).Google Scholar
16. Berczik, D.M., US Patent No. 5595616 , (1997).Google Scholar
17. Berczik, D.M., U.S. Patent No. 5693156 , (1997).Google Scholar
18. Park, J.S., Sakidja, R., Perepezko, J.H., Scripta Mater., 46, 765 (2002).Google Scholar
19. Helmick, D.A., Meier, G.H., Petit, F.S., Metallurgical and Materials Transactions A, 36, 3371 (2005).Google Scholar
20. Akinc, M., Meyer, M.K., Kramer, M.J., Thom, A.J., Huebsch, J.J., Cook, B., Mat. Sci. & Engr. A, 261, 16 (1999).Google Scholar
21. Thom, A.J., Meyer, M.K., Williams, J.J., Akinc, M., Symp. Proc. of Processing and Fabrication of Advanced Materials IV, Cleveland, Oct. 29-Nov. 2, 1995, (1996) p. 139.Google Scholar
22. Yoshimi, K., Nakatani, S., Nomura, N., Hanada, S., Intermetallics, 11, 787 (2003).Google Scholar
23. Yoshimi, K., Nakatani, S., Suda, T., Hanada, S., Habazaki, H., Intermetallics, 10, 407 (2002).Google Scholar
24. Woodard, S.R., Raban, R., Myers, J.F., Berczik, D.M., US Patent No. 6652674, (2003).Google Scholar
25. Shah, D.M., Berczik, D., Anton, D.L., Hecht, R., Mat. Sci. & Engr. A, 155, 45(1992).Google Scholar
26. Burk, S., Gorr, B., Trindade, V.B., Christ, H.-J., Oxid. Met., 73, 163 (2010).Google Scholar
27. Bansal, N.P., Doremus, R.H., in Handbook of Glass Properties, Academic Press: Orlando(1986).Google Scholar
28. Loo, F.J.J.v., Beek, J.A.v., Bastin, G.F., Solid St. Ionics, 16, 131 (1985).Google Scholar
29. Kirkaldy, J.S., Young, D.J., Diffusion in the Condensed State, (Institute of Metals, London, UK) (1987).Google Scholar
30. Rioult, F.A., Imhoff, S.D., Sakidja, R., Perepezko, J.H., Acta Materialia, 57, 4600 (2009).Google Scholar
31. Levine, S.R., Caves, R.M., J. Electrochem. Soc., 121, 1051 (1974).Google Scholar
32. Mueller, A., Wang, G., Rapp, R.A., Courtright, E.L., Kircher, T.A., Mat. Sci. & Engr. A, 155, 199 (1992).Google Scholar
33. Cockram, B.V., Rapp, R.A., Metallurgical and Materials Transactions A, 26, 777 (1995).Google Scholar
34. Sakidja, R., Park, J.S., Hamann, J., Perepezko, J.H., Scripta Mater., 52, 723 (2005).Google Scholar
35. Perepezko, J.H., Park, J.S., Sakidja, R., United States Patent No. 7,005,191, (2006).Google Scholar
36. Meyer, M., Kramer, M., Akinc, M., Advanced Materials, 8, 85 (1996).Google Scholar
37. Perepezko, J.H., Bassini, M.H.d.S., Park, J.S., Edelstein, A.S., Everett, R.K., Mater. Sci and Engr. A, 195, 1 (1995).Google Scholar