Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-02T18:35:10.447Z Has data issue: false hasContentIssue false

Oxidic Field Effect Structures with Memory

Published online by Cambridge University Press:  15 February 2011

R.M. Wolf
Affiliation:
Philips Research Laboratories, 345 Scarborough Road, Briarcliff Manor, NY 10510, USA.
J.F.M. Cillessen
Affiliation:
Philips Research Laboratories, Prof.Holstlaan 4, 5656 AA Eindhoven, the Netherlands
J.B. Giesbers
Affiliation:
Philips Research Laboratories, Prof.Holstlaan 4, 5656 AA Eindhoven, the Netherlands
E. Pastoor
Affiliation:
Philips Research Laboratories, Prof.Holstlaan 4, 5656 AA Eindhoven, the Netherlands
G. Miiller
Affiliation:
Philips Research Laboratories, Prof.Holstlaan 4, 5656 AA Eindhoven, the Netherlands
K.O. Grosse-Holz
Affiliation:
Philips Research Laboratories, Prof.Holstlaan 4, 5656 AA Eindhoven, the Netherlands
P.W.M. Blom
Affiliation:
Philips Research Laboratories, Prof.Holstlaan 4, 5656 AA Eindhoven, the Netherlands
Get access

Extract

Two types of switching memory devices have been made by integrating a ferroelectric layer in a device. A Schottky diode consisting of a ferroelectric semiconductor and a high work function metal was found to show a bistable I-V behaviour. Experimentally an On/Off current ratio of two orders of magnitude was found in a structure consisting of a semiconducting PbTiO3 layer with a gold top contact, grown on a La0.5Sr0.5CoO3 bottom contact layer. The ferroelectric polarization parallel or antiparallel to the internal field of the diode gives rise to a change in the Schottky barrier height and depletion width. This will, depending on the polarization direction of the ferroelectric layer, enhance or diminish the tunnel probability of charge carriers through the Schottky barrier and thereby increase or decrease the current through the device. In the Ferroelectric Field Effect Transistor an insulating ferroelectric gate oxide was brought in close contact to a gated n-type Sb-doped SnO2 semiconducting channel layer. A maximum On/Off Source-Drain current (IsD) ratio at zero gate voltage of 5.7 was found. Gate pulse measurements showed retention of IsD after polarisation reversal of the ferroelectric gate oxide in both polarization directions. After more than 104 switching cycles the device shows a gradual decrease in ISD both in the On and Off state.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Scott, J.F., Aruajo, C.A., Melnick, B.M., McMillan, L.D. and Zuleeg, R., J.Appl.Phys.,70(1991)382 Google Scholar
2. Fox, G.R. and Krupanidhi, S.B., J.Appl.Phys.,74(1993)1949 Google Scholar
3. Prisedsky, V.V., Shishkovsky, V.I. and Klimov, V.V., Ferroelectrics 17(1978)465 Google Scholar
4. Looney, D.H., U.S.Patent 2791758, W.L.Brown, U.S.Patent 2791759, 1.M.Ross, U.S.Patent 2791760 and J.A.Morton, U.S.Patent 2791761, all dated May 7,1957Google Scholar
5. Wu, S.Y., IEEE Trans.Electron Dev. ED–21(1973)499 Google Scholar
6. Wu, S.Y., Ferroelectrics 11(1976)379 Google Scholar
7. Buhay, H., Sinharoy, S., Kasner, W.H., Francombe, M.H., Lampe, D.R. and Stepke, E., Appl.Phys.Lett. 58(1991)1470 Google Scholar
8. Suchibuchi, K., Kurogi, Y. and End, N., J.Appl.Phys. 46(1975)2877 Google Scholar
9. Rost, T.A., Lin, H. and Rabson, A., Appl.Phys.Lett. 59(1991)3654 Google Scholar
10. Kalkur, T.S., Kulkarni, J., CLu, Y., Rowe, M., Han, W. and Kammerdiner, L., Ferroelectrics 116(1991)135 Google Scholar
11. Kalkur, T.S., Argos, G. and Kammerdiner, L., MRS Proc. 200(1990)Google Scholar
12. Veirnan, A.E.M. De, Hakkens, J. Tinmmers F.J.G., Cillessen, J.F.M. and Wolf, R.M., Philips J.Res. 47(1993)185 Google Scholar
13. Cillessen, J.F.M. and Wolf, R.M., Subm.to Appl.Phys.Lett.Google Scholar
14. Cillessen, J.F.M., Wolf, R.M. and Veirman, A.E.M. De, Appl.Surf.Sc. 69(1993)212 Google Scholar
15. Troost, K.Z., Sluis, P. van der, Gravesteijn, D.J., Appl.Phys.LeUtt. 62(1993)1110 Google Scholar
16. Tredgold, R.H., Space Charge Conduction in Solids (Elsevier, Amsterdam, 1966)Google Scholar
17. Norde, H., J.Appl.Phys. 50(1979)5052 Google Scholar
18. Blom, P.W.M., Wolf, RM., Cillessen, J.F.M. and Krijn, M.P.C.M., Conf.Proc.Electroceramics IV (Aachen, 1994)Google Scholar
19. Blom, P.W.M., Wolf, R.M., Cillessen, J.F.M. and Krijn, M.P.C.M., Phys.Rev.Lett. 73( 1994)2107Google Scholar
20. Wu, S.Y., IEEE Trans.Electr.Dev. ED–21(1974)228 Google Scholar