Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T20:44:59.206Z Has data issue: false hasContentIssue false

Oxygen Vacancies in Amorphous HfO2 and SiO2

Published online by Cambridge University Press:  01 February 2011

Chioko Kaneta
Affiliation:
kaneta.chioko@jp.fujitsu.com, Fujitsu Laboratories Ltd., Nanotechnology Research Center, 10-1 Morinosato-Wakamiya, Atsugi, 243-0197, Japan
Takahiro Yamasaki
Affiliation:
t.yamasaki@jp.fujitsu.com, Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi, 243-0197, Japan
Get access

Abstract

Formation energies and electronic properties of oxygen vacancies in amorphous HfO2 gate dielectrics are investigated by employing the first-principles method based on the density functional theory. We have found that the formation energy of neutral oxygen vacancy in amorphous HfO2 distributes from 4.7 to 6.1 eV, most of which is lower than the value for cubic HfO2, 6.0 eV. We also investigated the stabilities of the Vo pairs in various charged state and compared with those in amorphous SiO2. We found that Vo++ is stabilized in the vicinity of Vo in SiO2. In HfO2, however, this does not happen. This suggests the difference of defect propagation mechanism in HfO2 and SiO2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Foster, A. Gejo, F. Lopez, Sjluger, A. L. and Nieminen, M. Phys. Rev. B 65, 174117 (2002).Google Scholar
2. Umezawa, N. Shiraishi, K. Ohno, T. Boero, M. Watanabe, H. Chikyow, T. Torii, K. Yamabe, K., Yamada, K. and Nara, N. Physica B 376-377, 392 (2006).Google Scholar
3. Scopel, W. L. Silva, Antonio J. R. Da, Orellana, W. and Fazzio, F. Appl. Phys. Lett. 84 1492 (2004).Google Scholar
4. Xiong, K. and Robertson, J. Gibson, M. C. and Clark, S. J. Appl. Phys. Lett. 87, 183505 (2005).Google Scholar
5. Ikeda, M. Kresse, G. Nabatame, T. and Toriumi, A. Ext. Abs. of 2003 Int. Conf. on Solid State Dev. and Mat., 824 (2003).Google Scholar
6. Kaneta, C. Kosaka, Y. and Yamasaki, T. Conf. Proc. of .International Semiconductor Technology Conference 2002., ECS 262 (2003).Google Scholar
7. Car, R. and Parrinello, M. Phys. Rev. Lett., 55 2471 (1985).Google Scholar
8.PHASE, http://www.rss21.iis.u-tokyo.ac.jp/Google Scholar
9. Hohenberg, P. and Kohn, W., Phys. Rev. 136 B864 (1964).Google Scholar
10. Vanderbilt, D. Phys. Rev. 41 7892 (1990).Google Scholar
11. Perdew, J. P.Electronic Structure of Solids '91”, ed. by Ziesche, P. and Eschrig, H. (Academie Verlag, Berlin, 1991).Google Scholar
12. Kaneta, C. and Yamasaki, T. Microelectronic Engineering 84 (2007) 2370.Google Scholar
13. Oshiyama, A. Jpn. J. Appl. Phys. 38: L232 (1998).Google Scholar
14. Boero, M. Pasquarello, A. Sarnthein, J. and Car, R. Phys. Rev. Lett. 78, 887 (1997).Google Scholar