Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T08:26:06.839Z Has data issue: false hasContentIssue false

Pair-state formation in a nanocrystal: a theoretical perspective

Published online by Cambridge University Press:  21 March 2011

J. F. Suyver*
Affiliation:
Debye Institute, Physics and Chemistry of Condensed Matter, Utrecht University, P. O. Box 80.000, 3508 TA Utrecht, The Netherlands.
R. Meester
Affiliation:
Division of Mathematics and Computer Science, Free University of Amsterdam, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands.
A. Meijerink
Affiliation:
Debye Institute, Physics and Chemistry of Condensed Matter, Utrecht University, P. O. Box 80.000, 3508 TA Utrecht, The Netherlands.
J. J. Kelly
Affiliation:
Debye Institute, Physics and Chemistry of Condensed Matter, Utrecht University, P. O. Box 80.000, 3508 TA Utrecht, The Netherlands.
*
1 Corresponding author. Tel.: +31 - 30 - 253 2214; Fax: +31 - 30 - 253 2403; E-mail: j.f.suyver@phys.uu.nl
Get access

Abstract

Simulations of dopant pair-state distributions are presented for zincblende nanocrystals with different radii and for different dopant fractions. The probability of finding at least one pair-state and the concentration of pair-states were calculated on the basis of a statistical average of 105 simulations per crystal size and dopant concentration. The distribution of nanocrystal lattice positions over the surface and the bulk of the crystal is computed. A mathematical description of the distributions, valid in any crystal lattice, is discussed. This removes the need for further simulations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Brus, L., J. Phys. Chem. 90, 2555 (1986).Google Scholar
[2] Thomas, D. G., Hopfield, J. J. and Frosch, C. J., Phys. Rev. Lett. 15, 857 (1965).Google Scholar
[3] Pankove, J. I., Optical Processes in Semiconductors (Dover Publications, New York, 1971), page 61.Google Scholar
[4] Suyver, J. F., Wuister, S. F., Kelly, J. J. and Meijerink, A., Phys. Chem. Chem. Phys. 2, 5445 (2000).Google Scholar
[5] Ferguson, J., Guggenheim, H. J. and Tanabe, Y., J. Phys. Soc. Jpn. 21, 692 (1966).Google Scholar
[6] Ronda, C. R. and Amrein, T., J. Lumin. 69, 245 (1996).Google Scholar
[7] Maksimov, A. A., Bacher, G., et al., Phys. Rev. B 62, R7767 (2000).Google Scholar
[8] Behringer, R. E., J. Chem. Phys. 29, 537 (1958).Google Scholar
[9] Suyver, J. F., Meester, R., Kelly, J. J. and Meijerink, A., Submitted to Phys. Rev. B, (2001).Google Scholar
[10] Barbour, A. D., Holst, L. and Janson, S., Poisson Approximation (Clarendon Press, Oxford, 1992), chapter 2.Google Scholar
[11] Ross, S., A first course in probability (Collier Macmillan, New York, 1976), chapter 1.Google Scholar