Published online by Cambridge University Press: 21 February 2011
Epitaxial p-InP/Au Schottky diodes were fabricated by evaporation of Au onto Zn doped epitaxial layers of InP grown by MOVPE, on a highly doped InP substrate. The reverse current-voltage (Ir-Vr) and 1 MHz capacitance-voltage (C-V) characteristics of the Au/p-InP diodes were measured in the temperature range 220-393 K. At all temperatures, soft reverse current-voltage characteristics were observed, which may be due to the decrease in the effective Schottky barrier height (øbr) with the increase of Vr. The voltage dependence of the reverse current was well described in terms of the interface layer thermionic emission (ITE) model which incorporates the effects of applied reverse voltage drop and the transmission coefficient across the interface layer and image force lowering of the barrier height into the thermionic emission theory. A self consistent iteration and least square fitting technique was used to obtain the zero bias barrier height (øbo) and interface layer capacitance (Ci) from the Ir-Vr data. Both, the Ir-Vr and the C-V data were analyzed under the assumption of reverse bias voltage independence of the charge trapped in the interface states, which was supported by our experimental data. The values of øbo obtained from the C-V measurements agreed well with those obtained from the Ir-Vr data for a value of 0.45 AK−2cm−2 for the effective Richardson constant (Aeff).