Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-15T01:13:44.316Z Has data issue: false hasContentIssue false

Passivation of GaAs by Electrochemical Sulfur Treatments

Published online by Cambridge University Press:  21 February 2011

J. Yota
Affiliation:
Department of Chemical, Bio, and Materials Engineering and Center for Solid State Electronics ResearchArizona State University, Tempe, Arizona 85287-6006
V. A. Burrows
Affiliation:
Department of Chemical, Bio, and Materials Engineering and Center for Solid State Electronics ResearchArizona State University, Tempe, Arizona 85287-6006
S. Guha
Affiliation:
Department of Physics and Astronomy, Arizona State University, Tempe, Arizona 85287-1504
Get access

Abstract

Simple chemical sulfur treatments of GaAs have been shown to passivate the GaAs surface. These treatments result in lower surface state density, lower surface recombination velocity, and shifting or unpinning of the Fermi level, in addition to improvement in the performance of GaAs devices. Electrochemical sulfur treatment, however, has only recently been explored and pursued as a method of growing anodic surface layers which have good passivating characteristics on semiconductors. In this study, using surface infrared reflection spectroscopy (SIRS), x-ray photoelectron spectroscopy (XPS), and Raman spectroscopy, we have investigated the electrochemical sulfidation of GaAs as a method to produce a GaAs surface that has good electronic properties and is stable chemically and electronically. We have found that anodic treatments with Na2S and (NH4)2S solutions resulted in the removal of the pre-existing oxide of GaAs and in the formation of films comprising sulfur, sodium carbonate, ammonium thiosulfate, and various sulfide and sulfur-oxygen compounds of arsenic. The surface state density of this anodically treated surface was significantly better than that of untreated GaAs. Rinsing the GaAs with water removed the bulk of the film, leaving behind a surface on which only arsenic sulfide was detected. The surface state density after rinsing has degraded slightly, however, but it was still better than that of an untreated GaAs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Yablonovitch, E., Sandroff, C. J., Bhat, R., and Gmitter, T., Appl. Phys. Lett. 51, 439 (1987).CrossRefGoogle Scholar
[2] Fan, J. F., Oigawa, H., and Nannichi, Y., Jpn. J. Appi. Phys. 27, L1331 (1988).CrossRefGoogle Scholar
[3] Carpenter, M. S., Melloch, M. R., Lundstrom, M. S., and Tobin, S. P., Appl. Phys. Lett. 52, 2157 (1988).CrossRefGoogle Scholar
[4] Besser, R. S. and Helms, C. R., Appl. Phys. Lett. 52, 1707 (1988).CrossRefGoogle Scholar
[5] Hasegawa, H., Ishii, H., Sawada, T., Saitoh, T., Konshi, S., Liu, Y., and Ohno, H., J. Vac. Sci. Technol. B 6, 1184 (1988).CrossRefGoogle Scholar
[6] Sandroff, C. J., Nottenburg, R. N., Bischoff, J. C., and Bhat, R., Appl. Phys. Lett. 51, 33 (1987).CrossRefGoogle Scholar
[7] Fan, J. F., Kurata, Y., and Nannichi, Y., Jpn. J. Appl. Phys. 28, 2255 (1989).CrossRefGoogle Scholar
[8] Mauk, M. G., Xu, S., Arent, D. J., Mertens, R. P., and Borghs, G., Appl. Phys. Lett., 54, 213 (1989).CrossRefGoogle Scholar
[9] Kamiyama, S., Mori, Y., Takahashi, Y., and Ohnaka, K., Appl. Phys. Lett. 58, 2595 (1991).CrossRefGoogle Scholar
[10] Tiedje, T., Wong, P. C., Mitchell, K. A. R., Eberhardt, W., Fu, Z., and Sondericker, D., Solid State Commun. 70, 355 (1989).CrossRefGoogle Scholar
[11] Zhu, J., Hou, X., Ding, X., Jin, X., and Chen, P., Chinese Phys. 12, 753 (1992).Google Scholar
[12] Sandroff, C. J., Hedge, M. S., and Chang, C. C., J. Vac. Sci. Technol. B 9, 841 (1989).CrossRefGoogle Scholar
[13] Shin, J., Geib, K. M., and Wilmsen, C. W., J. Vac. Sd. Technol. B 7, 2337 (1991).CrossRefGoogle Scholar
[14] Spindt, C. J., Liu, D., Miyano, K., Meissner, P. L., Chiang, T. T., Kendelewics, T., Lindau, I., and Spicer, W. E., Appl. Phys. Lett. 55, 861 (1989).CrossRefGoogle Scholar
[15] Tiedje, T., Colbow, K. M., Rogers, D., Fu, Z., and Eberhardt, W., J. Vac. Sci. Technol. B 7, 837 (1989).CrossRefGoogle Scholar
[16] Wilmsen, C. W., Kirchner, P. D., Baker, J. M., McInturff, D. T., Pettit, G. D., and Woodall, J. M., J. Vac. Technol. B 6, 1180 (1988).CrossRefGoogle Scholar
[17] Wilmsen, C. W., Kirchner, P. D., Woodall, J. M., J. Appl. Phys. 64,3287 (1988).CrossRefGoogle Scholar
[18] Wang, Y., Darici, Y., and Holloway, P., J. Appl. Phys. 71, 2746 (1992).CrossRefGoogle Scholar
[19] Scimeca, T., Muramatsu, Y., Oshima, M., Oigawa, H., and Nannichi, Y., Phys. Rev. B 44, 12827 (1991).CrossRefGoogle Scholar
[20] Skromme, B. J., Sandroff, C. J., Yablonovitch, E., and Gmitter, T., Appl. Phys. Lett. 51, 2022 (1987).CrossRefGoogle Scholar
[21] Nemirovski, Y., Burstein, L., and Kidron, I., J. Appl. Phys. 58, 366 (1985).CrossRefGoogle Scholar
[22] Nemirovski, Y., Adar, R., Komfeld, A., and Kidron, I., J. Vac. Sci. Technol. A 4, 1986 (1986).CrossRefGoogle Scholar
[23] Ziegler, J. P. and Hemminger, J. C., Appl Phys. Lett. 54, 2238 (1989).CrossRefGoogle Scholar
[24] Sun, W., Appl. Phys. A 52,75 (1991).Google Scholar
[25] Barbour, J. C., Casalnuovo, S. A., and Kurtz, S. R., Mater. Res. Soc. Symp. Proc. 284 (1993), in press.Google Scholar
[26] Hou, X. Y., Cai, W. Z., He, Z. Q., Hao, P. H., Li, Z. S., Ding, X. M., and Wang, X., Appl Phys. Lett. 60, 2252 (1992).CrossRefGoogle Scholar
[27] Yota, J. and Burrows, V. A., J. Vac. Sci. Technol. A 11, (1993), in press; Mater. Res. Soc. Symp. Proc. 282 (1993), in press; Mater. Res. Soc. Symp. Proc. 25a 329 (1992); Mater. Res. Soc. Symp. Proc. 237. 281 (1992).CrossRefGoogle Scholar
[28] Lenczycki, C. T. and Burrows, V.A., Thin Solid Films 193/124, 610 (1990).CrossRefGoogle Scholar
[29] Barrow, G.M., J. Chem. Phys 21, 219 (1953).CrossRefGoogle Scholar
[30] Pouchert, C. J., The Aldrich Library of Infrared Spectra (Aldrich, Milwaukee, WI, 1981).Google Scholar
[31] Miller, F. A. and Wilkins, C. H., Anal. Chem. 24, 1253 (1952).CrossRefGoogle Scholar
[32] Farrow, L. A., Sandroff, C. J., and Tamargo, M. C., Appl. Phys. Lett. 51, 1931 (1987).CrossRefGoogle Scholar
[33] Sandroff, C. J., Hedge, M. S., Farrow, L. A., Bhat, R., Harbison, J. P., and Chang, C. C., J. Appl. Phys. 67, 586 (1990).CrossRefGoogle Scholar
[34] CYConnor, G.M., McDonagh, C. J., Anderson, F. G., Glynn, T. J., Morgan, G. P., Hughes, G. J., Roberts, L., and Henry, M. O., Appl. Surf. Sci. 50, 312 (1991).CrossRefGoogle Scholar
[35] Wang, P. D., Foad, M. A., Sotomayor-Torres, C. M., Thoms, S., Watt, M., Cheung, R., Wilkinson, C. D. W., and Beaumont, P., J. Appl. Phys. 71, 3754 (1992).CrossRefGoogle Scholar
[36] Wagner, C., Riggs, W. M., Davis, L. E., Moulder, J. F., and Mulllenberg, G. E., Handbook of XRay Photoelectron Spectroscopy (Perkin-Elmer, Eden Prairie, MN, 1979).Google Scholar