Published online by Cambridge University Press: 31 January 2011
Surface passivation of silicon substrates using atomic layer deposited Al2O3 and HfO2 thin films are assessed. Al2O3 and HfO2 dielectric layers with various thicknesses were deposited on both sides of n-type (100) FZ-Si substrates (resistivity 4 – 6 Ω-cm) at 200°C by atomic layer deposition (ALD) system. The effective excess carrier lifetime of as-deposited oxide/Si/oxide structure was measured by microwave-photoconductivity-decay (MWPCD) measurement technique and it was observed that the thicker ALD dielectrics lead to higher effective excess carrier lifetime and better surface passivation. The measurements showed average excess carrier lifetime values of 302 μs and 347 μs for as-deposited Al2O3 and HfO2 passivated Si substrates with 150 ALD cycles, respectively. MWPCD and capacitance-voltage (C-V) measurements suggest that as-deposited ALD HfO2 layer leads to a better surface passivation compared to as-deposited ALD Al2O3 layer. Further, the results suggest that there exist fixed negative charges in the bulk of the ALD dielectrics and this contributes to the field effect passivation of the silicon surfaces.