Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-28T14:19:09.293Z Has data issue: false hasContentIssue false

Pattern Formation via a Two-Step Faceting Transition on Vicinal Si(111) Surfaces

Published online by Cambridge University Press:  17 March 2011

F.K. Men
Affiliation:
Department of Physics, National Chung Cheng University, Chia-Yi, Taiwan, ROC
Feng Liu
Affiliation:
Department of Materials Science, University of Utah, Salt Lake City, UT 84112
P.J. Wang
Affiliation:
Department of Physics, National Chung Cheng University, Chia-Yi, Taiwan, ROC
C.H. Chen
Affiliation:
Department of Physics, National Chung Cheng University, Chia-Yi, Taiwan, ROC
D.L. Cheng
Affiliation:
Department of Physics, National Chung Cheng University, Chia-Yi, Taiwan, ROC
J.L. Lin
Affiliation:
Department of Physics, University of Wisconsin, Madison, WI 53705
F.J. Himpsel
Affiliation:
Department of Physics, University of Wisconsin, Madison, WI 53705
Get access

Abstract

We demonstrate a self-organized pattern formation on vicinal Si(111) surfaces that are miscut toward the [211] direction. All the patterns, consisting of a periodic array of alternating (7×7) reconstructed terraces and step-bunched facets, have the same periodicity and facet structure, independent of the miscut angle; while the width of the facets increases linearly with miscut angle. We attribute such unique pattern formation to a surface faceting transition that involves two transition steps: the first step forms a stress-domain structure defining the universal periodicity; the second step forms the low-energy facets controlling the facet width.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Marchenko, V.I., Sov. Phys. JEPT Lett. 33, 381 (1981); O.L. Alerhand, D. Vanderbilt, R.D. Meade, and J.D. Joannopolous, Phys. Rev. Lett. 61, 1973 (1988).Google Scholar
2.Men, F.K., Packard, W.E., and Webb, M.B., Phys. Rev. Lett. 61, 2469 (1988); M.B. Webb, F.K. Men, B.S. Swartzentruber, R. Kariotis, and M.G. Lagally, Surf. Sci. 242, 23Google Scholar
3.Phaneuf, R.J., Bartelt, N.C., Williams, E.D., Swiech, W., and Bauer, E., Phys. Rev. Lett. 67, 2986 (1991); R.J. Phaneuf, N.C. Bartelt, E.D. Williams, Phys. Rev. Lett. 71, 2284 (1993).Google Scholar
4.Williams, E.D., Phaneuf, R.J., Wei, J., Bartelt, N.C., and Einstein, T.L., Surf. Sci. 294, 219 (1993).Google Scholar
5.Hibino, H., Fukuda, T., Suzuki, M., Homma, Y., Sato, T., Iwatsuki, M., Miki, K., and Tokumoto, H., Phys. Rev. B 47, 13027 (1993); J.-L. Lin, D.Y. Petrovykh, J. Viernow, F.K. Men, D.J. Seo, and F.J. Himpsel, J. Appl. Phys. 84, 255 (1998).Google Scholar
6.Kasu, M. and Kobayashi, N., Appl. Phys. Lett. 62, 1262 (1993).Google Scholar
7.Rousset, S., Pourmir, F., Berroir, J.M., Klein, J., Lecoeur, J., Hecquet, P., and Salanon, B., Surf. Sci. 422, 33 (1999).Google Scholar
8.Watson, G.M., Gibbs, Doon, Zehner, D.M., Yoon, Mirang, and Mochrie, S.G.J., Phys. Rev. Lett. 71, 3166 (1993).Google Scholar
9.Wierenga, P.E., Kubby, J.A., and Griffith, J.E., Phys. Rev. Lett. 59, 2169 (1987).Google Scholar
10.Alerhand, O.L., Berker, A.N., Joannopoulos, J.D., Vanderbilt, D., Hamers, R.J., and Demuth, J.E., Phys. Rev. Lett. 64, 2406 (1990).Google Scholar
11.Martinez, R.E., Augustyniak, W.M., and Golovchenko, J.A., Phys. Rev. Lett. 64, 1035 (1990).Google Scholar
12.Vanderbilt, D., Phys. Rev. Lett. 59, 1456 (1987).Google Scholar