Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-04T06:05:19.188Z Has data issue: false hasContentIssue false

Patterned Deposition from Compressed Carbon Dioxide

Published online by Cambridge University Press:  11 February 2011

C. K. Luscombe
Affiliation:
Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
W. T. S. Huck
Affiliation:
Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
A. B. Holmes
Affiliation:
Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
T. Lu
Affiliation:
Supercritical Fluid Technology Group, Centre for Formulation Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
G. A. Leeke
Affiliation:
Supercritical Fluid Technology Group, Centre for Formulation Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
R. C. D. Santos
Affiliation:
Supercritical Fluid Technology Group, Centre for Formulation Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
B. Al-Duri
Affiliation:
Supercritical Fluid Technology Group, Centre for Formulation Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
J. P. K. Seville
Affiliation:
Supercritical Fluid Technology Group, Centre for Formulation Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
Get access

Abstract

Compressed CO2 is employed as the solvent for the deposition of polymers onto patterned surfaces created by a lithographic technique. This deposition technique should have wide applicability in the deposition of organic and polymeric materials for optoelectronic devices. The advantage of controlled deposition confers a further benefit in the control of the patterned surface. In a specific example a perfluorinated polymer was dissolved in liquid carbon dioxide. The polymer solution was deposited by use of a nozzle onto a pre-patterned surface. The resulting polymer film showed a clear image of the original pattern as measured by optical microscopy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., MacKay, K., Friend, R. H., Burns, P. L., and Holmes, A. B., Nature 347, 539 (1990).Google Scholar
2. Kraft, A., Grimsdale, A. C. and Holmes, A. B., Angew. Chem. Int. Ed. 37, 402 (1998).Google Scholar
3. Rees, I. D., Robinson, K. L., Holmes, A. B., Towns, C. R. and O'Dell, R., MRS Bull. 27, 451 (2002).Google Scholar
4. Sirringhaus, H., Kawase, T., Friend, R. H., Shimoda, T., Inbasekaran, M., Wu, W. and Woo, E. P., Science 290, 2123 (2000).Google Scholar
5. Braun, D. and Heeger, A. J., Appl. Phys. Lett. 58, 1982 (1991).Google Scholar
6. Tang, C. W. and VanSlyke, S. A., Appl. Phys. Lett. 51, 913 (1987).CrossRefGoogle Scholar
7. Tang, C. W. and VanSlyke, S. A., J. Appl. Phys. 65, 3610 (1989).Google Scholar
8. Shaw, J. M. and Seidler, P. F., IBM. J. Res. Dev. 45, 3 (2001).Google Scholar
9. Hebner, T. R., Wu, C. C., Marcy, D., Lu, M. H. and Sturm, J. C., Appl. Phys. Lett. 72, 519 (1998).CrossRefGoogle Scholar
10. Chang, S. C., Liu, J., Bharathan, J., Yang, Y., Onohara, J. and Kido, J., Adv. Mater. 11, 734 (1999).Google Scholar
11. Cooper, A. I., J. Mater. Chem. 10, 207 (2001).Google Scholar
12. Hoggan, E., DeSimone, J. M. and Carbonell, R. G., Polym. Prepr. Am. Chem. Soc. Div. PMSE 81, 218 (1999).Google Scholar
13. Wells, S. L. and DeSimone, J., Angew. Chem. Int. Ed. 40, 518 (2001).Google Scholar
14. Sundararajan, N., Yang, S., Ogino, K., Valiyaveettil, S., Wang, J. G., Zhou, X. Y., Ober, C. K., Obendorf, S. K. and Allen, R. D., Chem. Mater. 12, 41 (2000).CrossRefGoogle Scholar
15. Bae, Y. C., Douki, K., Yu, T. Y., Dai, J. Y., Schmaljohann, D., Koerner, K. and Ober, C. K., Chem. Mater. 14, 1306 (2002).Google Scholar
16. Hems, W. P., Yong, T. M., van Nunen, J. L. M., Cooper, A. I., Holmes, A. B. and Griffin, D. A., J. Mater. Chem. 9, 1403 (1999).CrossRefGoogle Scholar
17. Chernyak, Y., Henon, F., Harris, R. B., Gould, R. D., Franklin, R. K., Edwards, J. R., DeSimone, J. M. and Carbonell, R. G., Ind. Eng. Chem. Res. 40, 6118 (2001).CrossRefGoogle Scholar
18. Franklin, R. K., Edwards, J. R., Chernyak, Y., Gould, R. D., Henon, F. and Carbonell, R. G., Ind. Eng. Chem. Res. 40, 6127 (2001).Google Scholar