Published online by Cambridge University Press: 26 February 2011
The evolution of the defect structure in 3 MeV-proton irradiated Cu and Ni has been investigated by transmission electron microscopy and by differential dilatometry. The proton irradiations were performed at T≦100°C up to irradiation doses of 2 dpa. An efficient loss of selfinterstitial atoms at dislocations and a consequently high average concentration of vacancies in clusters is observed starting from rather low fluences. In addition an ordering of the defects in the form of periodic {001} walls with a typical periodicity length of ≈ 60 nm is observed for all equivalent {001} planes. The walls consist of high local concentrations of dislocations, dislocation loops and stacking-fault tetrahedra. The observed formation of periodic arraysof defect walls is considered as an example for a possibly general microstructural phenomenon in metals under irradiation.