Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-14T06:14:31.957Z Has data issue: false hasContentIssue false

Phase Change Memory with Chalcogenide Selector (PCMS): Characteristic Behaviors, Physical Models and Key Material Properties

Published online by Cambridge University Press:  01 February 2011

Ilya V. Karpov
Affiliation:
ilya.v.karpov@intel.com, Intel, Santa Clara, California, United States
David Kencke
Affiliation:
david.l.kencke@intel.com, Intel, Portland, Oregon, United States
Derchang Kau
Affiliation:
derchang.kau@intel.com, Intel, Santa Clara, California, United States
Stephen Tang
Affiliation:
Stephen.TANG@numonyx.com, Numonyx B.V., San Jose, California, United States
Gianpalo Spadini
Affiliation:
gianpaolo.spadini@intel.com, Intel, santa clara, California, United States
Get access

Abstract

We present a novel scalable and stackable nonvolatile solid state memory. Each cell consists of a storage element, based on phase change memory (PCM) element, and an integrated selector, using an Ovonic threshold switch (OTS). The cell is implemented to enable a true cross-point array. The main device characteristics and behaviors, corresponding physical processes in different operation modes, and key material properties are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Lai, Stefan and Lowrey, Tyler, IEDM Tech. Dig. (IEEE, 2001), p. 903.Google Scholar
2 Ovshinsky, S., Phys. Rev. Lett., 21, p. 1450 (1968).10.1103/PhysRevLett.21.1450Google Scholar
3 Adler, D., Henisch, H., and Mott, N., Reviews of Modern Physics, 50, p. 209 (1978)10.1103/RevModPhys.50.209Google Scholar
4 Kau, D., Tang, S., Karpov, I., Dodge, R., Klehn, B., Kalb, J., Strand, J., Diaz, A., Leung, N., Wu, J., Lee, S., Langtry, T., Chang, K., Papagianni, C., Lee, J., Hirst, J., Erra, S., Flores, E., Righos, N., Castro, H., and Spadini, G., IEDM Tech. Dig. (IEEE, 2009), p. 617.Google Scholar
5 Karpov, I., Savransky, S., and Karpov, V., 22nd IEEE Nonvolatile Semiconductor Memory Workshop, (IEEE, 2007), p. 56.Google Scholar
6 Kencke, D., Karpov, I., Johnson, B., Lee, S., Kau, D., Hudgens, S., Reifenberg, J., Savransky, S., Zhang, J., Giles, M., and Gianpaolo Spadini, IEDM Tech. Dig. (IEEE, 2007), p. 323.Google Scholar
7 Karpov, I., Mitra, M., Kau, D., Spadini, G., Kryukov, A., and Karpov, V., Appl. Phys. Lett. 92, 173501 (2008).10.1063/1.2917583Google Scholar
8 Nardone, M., Karpov, V. G., Jackson, D. C. S., and Karpov, I. V., Appl. Phys. Lett. 94, 103509 (2009).10.1063/1.3100779Google Scholar
9 Karpov, V., Kryukov, Y., Karpov, I., and Mitra, M., Phys. Rev. B, 78, 052201 (2008)10.1103/PhysRevB.78.052201Google Scholar
10 Karpov, V., Kryukov, Y., Mitra, M., and Karpov, I., J. Appl. Phys. 104, 054507 (2008).Google Scholar
11 Nardone, M., Karpov, V.G., and Karpov, I. V., J. Appl. Phys., 107, 054519 (2010).Google Scholar
12 Karpov, I., Mitra, M., Kau, D., Spadini, G., Kryukov, Y., and Karpov, V., J. Appl. Phys. 102, 124503 (2007) and I. Karpov, M. Mitra, D. Kau; G. Spadini, Y. Kryukov, and V Karpov, International Symposium on VLSI Technology, Systems and Applications (IEEE, 2008). p.140.10.1063/1.2825650Google Scholar