Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T16:22:01.694Z Has data issue: false hasContentIssue false

Phase diagrams of Ni2+xMn1-xGa Heusler alloys from Hubbard Hamiltonian with account of Jahn-Teller effect

Published online by Cambridge University Press:  25 March 2011

Mikhail A. Zagrebin
Affiliation:
Chelyabinsk State University, 129 Brat’ev Kashirinykh Str., Chelyabinsk, 454001, Russia
Vasiliy D. Buchelnikov
Affiliation:
Chelyabinsk State University, 129 Brat’ev Kashirinykh Str., Chelyabinsk, 454001, Russia
Sergey V. Taskaev
Affiliation:
Chelyabinsk State University, 129 Brat’ev Kashirinykh Str., Chelyabinsk, 454001, Russia
Natal’ya Yu. Fedulova
Affiliation:
Chelyabinsk State University, 129 Brat’ev Kashirinykh Str., Chelyabinsk, 454001, Russia
Get access

Abstract

In this work a microscopic Hamiltonian is investigated using the Hubbard model for a ferromagnet with two degenerate bands, taking into account the Jahn-Teller effect. A macroscopic free energy is obtained from the microscopic Hubbard Hamiltonian. All free energy coefficients depend on microscopic parameters: temperature T and composition x. As a result of analytical minimization of free energy, phase diagrams are numerically constructed. It is shown that at certain values of parameters on the phase diagrams there are thermodynamic paths which correspond to experimentally observed sequences of phase transitions. Using density of states spectra for different compositions x the T-x phase diagram is numerically constructed. This phase diagram can theoretically explain experimentally observed behavior of the temperatures of phase transitions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Entel, P., Buchelnikov, V.D., Khovailo, V.V., Zayak, A.T., Adeagbo, W.A., Gruner, M.E., Herper, H.C. and Wassermann, E.F., J. of Physics D: Appl. Physics, 39, 865 (2006).10.1088/0022-3727/39/5/S13Google Scholar
2. Entel, P., Gruner, M.E., Dannenberg, A., Siewert, M., Nayak, S.K., Herper, H.C., and Buchelnikov, V.D., Materials Science Forum. 635, 3 (2010).10.4028/www.scientific.net/MSF.635.3Google Scholar
3. Fujii, S., Ishida, S. and Asano, S., J. Phys. Society of Japan, 58, 3657 (1989).10.1143/JPSJ.58.3657Google Scholar
4. Ray, D.K. and Jardin, J.P., Phys. Rev. B. 33, 5021 (1986).10.1103/PhysRevB.33.5021Google Scholar
5. Popkov, A.F., Popov, A.I., Goryachev, A.V., and Shavrov, V.G., J. of Experimental and Theoretical Physics. 104, 943 (2007).10.1134/S106377610706012XGoogle Scholar
6. Landau, L.D. and Lifshitz, E.M.. Statistical Physics, 3rd ed., (Pergamon Press, New York, 1980).Google Scholar
7. Schonhammer, K.. J. Phys. C: Solid State Phys., 7, 3520 (1974).10.1088/0022-3719/7/19/012Google Scholar
8. Khovaylo, V.V., Buchelnikov, V.D., Kainuma, R., Koledov, V.V., Ohtsuka, M., Shavrov, V.G., Takagi, T., Taskaev, S.V., and Vasiliev, A.N., Phys. Rev. B. 72, 224408 (2005).10.1103/PhysRevB.72.224408Google Scholar
9. Chakrabarti, A., Biswas, C., Banik, S., Dhaka, R.S., Shukla, A.K., and Barman, S. R., Phys. Rev. B. 72, 073103 (2005).10.1103/PhysRevB.72.073103Google Scholar
10. Banik, S., Ranjan, R., Chakrabarti, A., Bhardwaj, S., Lalla, N.P., Awasthi, A.M., Sathe, V., Phase, D. M., Mukhopadhyay, P.K., Pandey, D., and Barman, S.R., Phys. Rev. B. 75, 104107 (2007).10.1103/PhysRevB.75.104107Google Scholar