Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-13T00:46:27.392Z Has data issue: false hasContentIssue false

Phase Segregation in Manganese Perovskites

Published online by Cambridge University Press:  16 February 2011

P.G. Radaelli
Affiliation:
ISIS facility, RAL, Chilton, Didcot, OX11 0QX, UK
D.N. Argyriou
Affiliation:
Los Alamos Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos, NM 87543, USA
D.E. Cox
Affiliation:
Brookhaven National Laboratory, Upton, NY 11973, USA
L. Capogna
Affiliation:
ILL, BP 156, 38042 Grenoble, FRANCE
H. Casalta
Affiliation:
ILL, BP 156, 38042 Grenoble, FRANCE
K. Andersen
Affiliation:
ILL, BP 156, 38042 Grenoble, FRANCE
S-W. Cheong
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974, USA Department of Physics and Astronomy, Rutgers University, Piscataway, NJ08855, USA
J.F. Mitchell
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
M. Marezio
Affiliation:
MASPEC-CNR, via Chiavari 18A, 42100 Parma, ITALY
Get access

Abstract

The structural, magnetic and transport phase diagrams of the manganese perovskites (general formula: A1-xA'xMnO3) are characterised by a variety of exotic phenomena, including high-temperature polaronic behaviour, charge, orbital and magnetic ordering and colossal magnetoresistance (CMR). These properties can be “tuned” by changing the doping level x, the electronic bandwidth (through the average A-site ionic radius, <rA>), and the A-site disorder, and are believed to be a manifestation of the underlying competition between electron-lattice coupling and double exchange. Usually, at low temperatures, one of these two interactions is dominant, resulting in a homogeneous ground state, which is either a metallic ferromagnet or a charge-ordered insulator. We have recently found, however, that, for special points in the phase diagram (x ~ 0.3,,<rA> ~ 1.18 Å), the competition can be preserved down to low temperatures, resulting in an inhomogeneous ground state at the microscopic level. This unusual state is characterised by the coexistence of charge-ordered and metallic domains, which are intertwined over a variety of length-scales, and appear to show spin-glass-like dynamics. Upon application of an external field (magnetic field, pressure or even x-rays), the domains grow to macroscopic sizes, resulting in phase segregation. We speculate that the evolution of the local magnetic and crystal structures during this phase segregation process may parallel those occurring, at much higher temperatures, for compounds displaying CMR behaviour at the paramagnetic-toferromagnetic transition. Very recently, it has been suggested that the charge-ordered state, which is stable for higher values of the Mn oxidation state (x ≥ 0.5), may also be associated with modulated mesoscopic phase segregation, in the form of “stripes”. This hypothesis will be discussed in the light of recent x-ray synchrotron and neutron diffraction data on the crystallographic and magnetic modulation in La0.33Ca0.67MnO3

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jonker, G. H., Santen, J. H. V., Physica 16, 337 (1950).Google Scholar
2. Wollan, E. O., Koehler, W. C., Phys. Rev. 100, 545563 (1955).Google Scholar
3. Goodenough, J. B., Phys. Rev. 100, 564573 (1955).Google Scholar
4. Zener, C., Phvs. Rev. 82, 403405 (1951).Google Scholar
5. Anderson, P. W., Hasegawa, H., Phys. Rev. 100, 675681 (1955).Google Scholar
6. Kubo, K., Ohata, N., Journal of the Physical Society of Japan 33, 21 (1972).Google Scholar
7. Rao, C. N. R., Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences 356, 2338 (1998).Google Scholar
8. Furukawa, N., J Phys Soc Jpn 64, 27342737 (1995).Google Scholar
9. Bishop, A. R., Roder, H., Current Opinion in Solid St. & Mat. Sci. 2, 224251 (1997).Google Scholar
10. Millis, A. J., Shraiman, B. I., Mueller, R., Physical Review Letters 77, 175178 (1996).Google Scholar
11. Dai, P., et al. , Physical Review B 54, 36943697 (1996).Google Scholar
12. Radaelli, P. G., et al. , Phys Rev Lett 75, 44884491 (1995).Google Scholar
13. Radaelli, P. G., Marezio, M., Hwang, H. Y., Cheong, S.-W., Battlog, B., Physical Review B 54, 89928995 (1996).Google Scholar
14. Tyson, T. A., et al. , Phys Rev B-Condensed Matter 53, 1398513988 (1996).Google Scholar
15. Billinge, S. J. L., Difrancesco, R. G., Kwei, G. H., Neumeier, J. J., Thompson, J. D., Phys Rev Lett 77, 715718 (1996).Google Scholar
16. Zhou, J.-S., Goodenough, J. B., Physical Review Letters 80, 26652668 (1998).Google Scholar
17. Kaplan, S. G., et al. , Phys Rev Lett 77, 20812084 (1996).Google Scholar
18. Zhao, G. M., Conder, K., Keller, H., Muller, K. A., Nature 381, 676678 (1996).Google Scholar
19. De Teresa, J. M., et al. , Nature 386, 256259 (1997).Google Scholar
20. Lynn, J. W., et al. , Phys Rev Lett 76, 40464049 (1996).Google Scholar
21. Chen, C. H., Cheong, S.-W., Hwang, H. Y., Journal of Applied Physics 81, 43264330 (1997).Google Scholar
22. Mori, S., Chen, C. H., Cheong, S.-W., Nature (London) 392, 473476 (1998).Google Scholar
23. Tranquada, J. M., Sternlieb, B. J., Axe, J. D., Nakamura, Y., Uchida, S., Nature 375, 561563 (1995).Google Scholar
24. Lee, S.-H., Cheong, S.-W., Physical Review Letters 79, 25142517 (1997).Google Scholar
25. Radaelli, P. G., Cox, D. E., Marezio, M., Cheong, S.-W., Phys.Rev.B 55, 3015 (1997).Google Scholar
26. Kiryukhin, V., et al. , Nature 386, 813815 (1997).Google Scholar
27. Fernandez-Baca, J. A., Dai, P., Hwang, H. Y., Kloc, C., Cheong, S.-W., Phys Rev.Lett. 80, 4012–405 (1998).Google Scholar
28. Hwang, H. Y., Cheong, S.-W., Radaelli, P. G., Marezio, M., Batlogg, B., Phys Rev.Lett. 75, 914917 (1995).Google Scholar
29. Cox, D. E., Radaelli, P. G., Marezio, M., Cheong, S.-W., Phys.Rev.B 57, 33053314 (1998).Google Scholar
30. Jirák, Z., Krupicka, S., Simsa, Z., Dlouhá, M., Vratislav, S., J.Mag.Mag.Mat. 53, 153166 (1985).Google Scholar
31. Yoshizawa, H., Kawano, H., Tomioka, Y., Tokura, Y., J Phys Soc Jpn 65, 10431052 (1996).Google Scholar
32. Yoshizawa, H., Kajimoto, R., Kawano, H., Tomioka, Y., Tokura, Y., Phys Rev B 55, 27292732 (1997).Google Scholar
33. Viret, M., Glätti, H., Fermon, C., Leon-Gevara, A. M. d., Revcolevschi, A., Europhys. Lett. 42, 301306 (1998).Google Scholar
34. Murani, A. P., Physical Review Letters 41, 14061409 (1978).Google Scholar
35. Raveau, B., Maignan, A., Caignaert, V., Journal of Solid State Chemistry 117, 424426 (1995).Google Scholar
36. Radaelli, P. G., Cox, D. E., Capogna, L., Cheong, S.-W., Marezio, M., Submitted to Phys. Rev. B (1998).Google Scholar
37. Fernandez-Diaz, M. T., Martinez, J. L., Alonso, J. M., Herrero, E., Phys.Rev.B, in press (1998).Google Scholar
38. Ahn, K. H., Millis, A. J., Phys.Rev.B 58, 36973703 (1998).Google Scholar