Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T11:07:55.377Z Has data issue: false hasContentIssue false

Phase Separation in InGaN/GaN Multiple Quantum Wells

Published online by Cambridge University Press:  10 February 2011

M. D. Mccluskey
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Rd., Palo Alto, CA 94304, mccluske@ parc.xerox.com
L. T. Romano
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Rd., Palo Alto, CA 94304, mccluske@ parc.xerox.com
B. S. Krusor
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Rd., Palo Alto, CA 94304, mccluske@ parc.xerox.com
D. P. Bour
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Rd., Palo Alto, CA 94304, mccluske@ parc.xerox.com
C. Chua
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Rd., Palo Alto, CA 94304, mccluske@ parc.xerox.com
N. M. Johnson
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Rd., Palo Alto, CA 94304, mccluske@ parc.xerox.com
Kin Man Yu
Affiliation:
Lawrence Berkeley National Laboratory, MS 2-200, 1 Cyclotron Rd., Berkeley, CA 94720
Get access

Abstract

Evidence is presented for phase separation in In0.27Ga0.73N/GaN multiple quantum wells (MQW's). After annealing for 4 min at a temperature of 1100 °C, the absorption threshold at 2.95 eV is replaced by a broad peak at 2.65 eV. This peak is attributed to the formation of Inrich InGaN phases in the active region. X-ray diffraction measurements show a shift in the diffraction peaks toward GaN, consistent with the formation of an In-poor phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, S., Senoh, M., Iwasa, N., and Nagahama, S., Jpn. J. Appl. Phys. 34, L797 (1995).10.1143/JJAP.34.L797Google Scholar
2. Nakamura, S., Senoh, M., Nagahama, S., lwasa, N., Yamada, T., Matsushita, T., Kiyoko, H., and Sugimoto, Y., Jpn. J. Appl. Phys. 35, L74 (1996).10.1143/JJAP.35.L74Google Scholar
3. See, for example, Ponce, F.A. and Bour, D.P., Nature 386, 351 (1997).10.1038/386351a0Google Scholar
4. Osamura, K., Nakajima, K., and Murakami, Y., Solid State Commun, 11, 617 (1972).10.1016/0038-1098(72)90474-7Google Scholar
5. Osamura, K., Naka, S., and Murakami, Y., J. Appl. Phys. 46, 3432 (1975).10.1063/1.322064Google Scholar
6. Singh, R., Doppalapudi, D., Moustakas, T.D., and Romano, L.T., Appl. Phys. Lett. 70, 1089 (1997).10.1063/1.118493Google Scholar
7. Ho, I-hsiu and Stringfellow, G.B., Appl. Phys. Lett. 69, 2701 (1996).10.1063/1.117683Google Scholar
8. McCluskey, M.D., Romano, L.T., Krusor, B.S., Bour, D.P., Johnson, N.M., and Brennan., S., submitted to Appl. Phys. Lett.Google Scholar
9. Wright, A.F. and Nelson, J.S., Appl. Phys. Lett. 66, 3051 (1995).10.1063/1.114274Google Scholar
10. Nakamura, S., Mukai, T., Senoh, M., Nagahama, S., and Iwasa, N., J. Appl. Phys. 74, 3911 (1993).10.1063/1.354486Google Scholar
11. Keller, S., Keller, B.P., Kapolnek, D., Abare, A.C., Masui, H., Coldren, L.A., Mishra, U.K., and Baars, S.P. Den, Appl. Phys. Lett. 68, 3147 (1996).10.1063/1.115806Google Scholar