Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T07:11:50.569Z Has data issue: false hasContentIssue false

Phonon Shifts and Strains in Strained-Layer (Ga1−xInx)As

Published online by Cambridge University Press:  26 February 2011

Gerald Burns
Affiliation:
IBM T. J. Watson Research Center Yorktown Heights, NY 10598
C. R. Wie
Affiliation:
Dept. of Elect. and Computer Eng. SUNY at Buffalo Amherst, NY 14260
F. H. Dacol
Affiliation:
IBM T. J. Watson Research Center Yorktown Heights, NY 10598
G. D. Pettit
Affiliation:
IBM T. J. Watson Research Center Yorktown Heights, NY 10598
J. M. Woodall
Affiliation:
IBM T. J. Watson Research Center Yorktown Heights, NY 10598
Get access

Abstract

For thin (Ga1−xInx)As films on GaAs (100) substrates we have measured the phonon frequencies (Raninn technique) and the strains (x-ray rocking curve technique). The films range from perfect epitaxial (the thinner films) to those that have relaxed by different amounts (thicker films). Using the measured strains and the phonon deformation constants, the strain-induced frequency shift was calculated for each sample. From the measurements and calculation, we find that the frequency shifts due to strain give equivalent bulk phonon frequencies that are in good agreement with each other. This indicates that the Raman technique can be used for in-situ monitoring of the growth process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Frank, F.C. and van der Merwe, J., Proc. Roy. Soc. (London) A 198, 210 (1949).Google Scholar
2.Matthews, J. W., Mader, S., Light, T. B., J. Appl. Phys. 41, 3800 (1970).Google Scholar
3.Woodall, J. M., Pettit, G. D., Jackson, T. N., Lanza, C., Kavanagh, K. K., and Mayer, J. W., Phys. Rev. Lett. 51, 1783. (1983).Google Scholar
4.Flory, A.T., Bean, J.C., Feldman, L.C., and Robinson, I.K., Appl. Phys. Lett., 56, 1227 (1984).Google Scholar
5.Wie, C. R., Tombrello, T. A., and Vreeland, T. Jr, J. Appl. Phys. 59, 3743 (1986). V. Spertosu, J. Appl. Phys. 52, 6094 (1981).Google Scholar
6.Anastassakis, E., Pinczuk, A., Burstein, E., Pollak, F. H., and Cardona, M., Solid State Commun. 8, 133 (1970).Google Scholar
7.Cerdeira, F., Buchenauer, C. J., Pollak, F. H., and Cardona, M., Phys. Rev. B 5, 580 (1972).Google Scholar
8.Sood, A. K., Anastassakis, E., and Cardona, M., Phys. Stat. Sol. (b), 129, 505 (1985). References to the earlier work in the field can be found in this paper.Google Scholar
9.Kamigaki, K., Sakashita, H., Kato, H., Nakayama, M., Sano, N., and Terauchi, H., Appl. Phys. Lett., 49, 1071 (1986).Google Scholar
10.Further details of the work discussed here are in: Burns, G., Wie, C. R., Dacol, F. H., Pettit, G. D., and Woodall, J. M., Appl. Phys. Lett., 51, 1919 (1987).Google Scholar
11.Brodsky, M. H. and Lucovsky, G., Phys. Rev. Lett. 21, 990, (1968).Google Scholar