Published online by Cambridge University Press: 15 February 2011
To get information on the density of states distribution and the photocarrier recombination in microcrystalline silicon (μc-Si:H), samples with various amounts of n- and p-type doping are studied with electron spin resonance (ESR) and stationary and time-resolved light induced ESR. The intensity of the dark ESR signals from dangling bonds (DB) and conduction electrons (CESR) is investigated as a function of the doping level. The DB signal has a flat distribution over a wide doping range while the CESR signal strongly increases with n-type doping. Upon illumination with white or infrared light both resonances are enhanced with an intensity that depends on the doping level. The decay of the light induced signal and the dependence in time and intensity of the residual signal on different initial excitation energies and dark/light -sequences is studied. The results are discussed with a schematic band diagram for μc-Si:H. The existence of a potential barrier is proposed which spatially separates photogenerated carriers. A large band-offset between crystalline and disordered regions is further suggested.