Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-13T05:47:51.236Z Has data issue: false hasContentIssue false

Photochromic properties in Eu3+ doped Sr2SnO4

Published online by Cambridge University Press:  10 May 2013

Sunao Kamimura
Affiliation:
Interdisciplinary Graduate School of Engineering Science, Kyushu University, Fukuoka 816-8580, Japan
Hiroshi Yamada
Affiliation:
Interdisciplinary Graduate School of Engineering Science, Kyushu University, Fukuoka 816-8580, Japan National Institute of Advanced Industrial Science and Technology (AIST), Saga 841-0052, Japan
Chao-Nan Xu
Affiliation:
Interdisciplinary Graduate School of Engineering Science, Kyushu University, Fukuoka 816-8580, Japan National Institute of Advanced Industrial Science and Technology (AIST), Saga 841-0052, Japan International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Fukuoka 819-0395, Japan
Get access

Abstract

We report the photochromism (PC) in Eu3+ doped Sr2SnO4. The Sr2SnO4:Eu3+ is sensitive to UV light (λ < 350 nm) and turns to purple color. When visible light (λ= 400-700 nm) is irradiated, the colored Sr2SnO4:Eu3+ is bleached. From the results of absorption spectrum, Sr vacancies in the host lattice and charge transfer transition between Eu3+-O2- is responsible for PC process of Sr2SnO4:Eu3+.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Galasso, F. S., Structure, Properties and Preparation of Perovskite-type compounds (Pergamon, Oxford, 1969).Google Scholar
Koumoto, K., Wang, Y., Zhang, R., Kosuga, A., and Funahashi, R., Annu. Rev. Mater. Res. 40, 363 (2010).CrossRefGoogle Scholar
Wang, X. S., Xu, C. N., Yamada, H., Nishikubo, K., and Zheng, X. G., Adv. Mater. 17, 1254 (2005).CrossRefGoogle Scholar
Faughnan, B. W., and Kiss, Z. J., Phys. Rev. Lett. 21. 1331 (1968).CrossRefGoogle Scholar
Cohen, A. J., and Smith, H. L., Science. 137. 981 (1962).CrossRefGoogle Scholar
Poirier, G., Nalin, M., Cescato, L., Messaddeq, Y., and Rebeiro, S. J. L., J. Chem. Phys. 125. 161101 (2006).CrossRefGoogle Scholar
Yao, J. N., Hashimoto, K., and Fujishima, A., Nature. 355. 624 (1992).CrossRefGoogle Scholar
Ohko, Y., Tatsuma, T., Fujii, T., Naoi, K., Niwa, C., Kubota, Y., and Fujishima, A., Nature. Mater. 2, 29 (2003).CrossRefGoogle Scholar
Akiyama, M., Appl. Phys. Lett. 97, 181905 (2010).CrossRefGoogle Scholar
He, T., and Yao, J., Prog. Mater. Sci. 51, 810 (2006).CrossRefGoogle Scholar
Yi, Z. G., Iwai, H., and Yel, J. H., Appl. Phys. Lett. 96. 114103 (2010).CrossRefGoogle Scholar
Fu, W. T., Visser, D., and IJdo, D. J. W., J. Solid. State. Chem. 169, 208 (2002).CrossRefGoogle Scholar
Kamimura, S., Yamada, H., and Xu, C. N., Appl. Phys. Lett. 101, 091113 (2012).CrossRefGoogle Scholar
Chen, Y. C., Chang, Y. H., and Tsai, B. S., J. Alloys. Comp. 398, 256 (2005).CrossRefGoogle Scholar
Yi, Z. G., Iwai, H., and Yel, J. H., Appl. Phys. Lett. 96. 114103 (2010).CrossRefGoogle Scholar
Yang, H. M., Shi, J. X., and Gong, M. L., J. Alloy. Compd. 415, 213 (2006).CrossRefGoogle Scholar
Xu, C. N., Watanabe, T., and Akiyama, M., and Zheng, X. G., Appl. Phys. Lett. 74, 2414 (1999).CrossRefGoogle Scholar
Struck, C. W., and Fonger, W. H., Phys. Rev. B. 4, 22 (1971).CrossRefGoogle Scholar