Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T06:59:56.604Z Has data issue: false hasContentIssue false

Photo-controllable Resistive Memory Based on Polymer Materials

Published online by Cambridge University Press:  18 March 2015

Mikhail Dronov
Affiliation:
A.M. Prokhorov General Physics Institute, Moscow, Russian Federation M.V. Lomonosov Moscow State University, Moscow, Russian Federation Federal State Research and Design Institute of Rare Metal Industry ("Giredmet"), Moscow, Russian Federation;
Maria Kotova
Affiliation:
M.V. Lomonosov Moscow State University, Moscow, Russian Federation
Ivan Belogorohov
Affiliation:
Federal State Research and Design Institute of Rare Metal Industry ("Giredmet"), Moscow, Russian Federation;
Get access

Abstract

We present the memory performance of devices with bistable electrical behavior based on polymer materials. We demonstrate that adding photosensitive particles to admixture allows us to control switching voltages and to observe photo-induced switching in addition to electrical one. From the properties of electrically-induced resistive switching and from the presence of light-induced switching we propose the necessity to consider crossover between to different switching mechanisms – filament formation and charge storage.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Carchano, H., Lacoste, R., Segui, Y., Appl. Phys. Lett. 1971, 19, 414.CrossRefGoogle Scholar
Pender, L. F., Fleming, R. J., J. Appl. Phys. 1975, 46, 3426.CrossRefGoogle Scholar
Prime, D., Paul, S., Phil. Trans. R. Soc. A 2009, 367, 4141.CrossRefGoogle Scholar
Scott, J. C., Bozano, L. D., Adv. Matter. 2007, 19, 1452.CrossRefGoogle Scholar
Ielmini, D., Bruchhaus, R., Waser, R.. Phase Transitions 2011, 84, 570.CrossRefGoogle Scholar
Valov, I., ChemElectroChem 2014, 1, 26.CrossRefGoogle Scholar
Valov, I., Waser, R., Jameson, J. R., Kozicki, M. N., Nanotechnology 2011, 22, 254003.CrossRefGoogle Scholar
Pearson, C., Bowen, L., Lee, M.-W., Fisher, A.L., Linton, K.E., Bryce, M.R., Petty, M.C., Appl. Phys. Lett. 2013, 12, 213301.CrossRefGoogle Scholar
Bozano, L. D., Kean, B. W., Beinhoff, M., Carter, K. R., Scott, J. C., Adv. Funct. Mater. 2005, 15, 1933.CrossRefGoogle Scholar
Dronov, M., Belogorohov, I., Khokhlov, D., MRS Proceedings, 1337, mrss11-1337-q05-07 (2011).CrossRefGoogle Scholar
Hino, T., Hasegawa, T., Tanaka, H., Tsuruoka, T., Terabe, K., Ogawa, T., Aonoet, M., Nanotechnology 2013, 24, 384006 CrossRefGoogle Scholar
Dearnaley, G., Morgan, D. V., Stoneham, A. M., J. Non-Cryst. Solids 1970, 4, 593.CrossRefGoogle Scholar
Dearnaley, G., Stoneham, A. M., Morgan, D. V., Rep. Prog. Phys. 1970, 33, 1129.CrossRefGoogle Scholar
Quyang, J., Chu, C.-W., Sieves, D., Y. Yang Appl. Phys Lett. 2005, 86, 123507.Google Scholar