No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
The evolution of the surface morphology of unintentionally doped and Si-doped GaN samples subjected to photoelectrochemical (PEC) etching in the carrier-limited regime in aqueous KOH is reported. It was found that a nanoporous structure precedes whisker formation in samples in which high densities of whiskers ultimately form. Increasing the light intensity accelerated the rate of change of the surface morphology, but increasing the molarity of the KOH had no effect on the etching. Applying biases to the samples during etching also accelerated or decelerated the rates of change of the surface morphology. Thus, the surface morphology in the carrier-limited regime tends to only depend on parameters of the starting layers, as well as how much etching in total has occurred. The identification of variations in surface morphology at different times during PEC etching of GaN may have utility in that assorted nanopatterning of the GaN surface can be intentionally achieved in a controllable, large-scale, and inexpensive manner.