Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-13T02:51:13.326Z Has data issue: false hasContentIssue false

Photoluminescence of Silicon Nanostructures Formed by Ion Beam Implantation

Published online by Cambridge University Press:  25 February 2011

D. A. Redman
Affiliation:
Sandia National Laboratories, Albuquerque, NM.
D. M. Follstaedt
Affiliation:
Sandia National Laboratories, Albuquerque, NM.
T. Guilinger
Affiliation:
Sandia National Laboratories, Albuquerque, NM.
M. Kelly
Affiliation:
Sandia National Laboratories, Albuquerque, NM.
Get access

Abstract

A new method was used to fabricate nanometer-scale structures in Si for photoluminescence (PL) studies. He ions were implanted to form a dense subsurface layer of small cavities (1–8 nm diameters). The implanted specimens were either annealed in H or anodized with HF to evaluate the quantum confinement model for PL from porous Si. Incomplete passivation apparently prevented PL in the H-annealed specimens. Implantation combined with anodization produced a substantial blue shift relative to anodization alone, which is consistent with quantum confinement.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Canham, L. T., Appl Phys. Lett. 57, 1046 (1990).CrossRefGoogle Scholar
2. Fuchs, H. D., Brandt, M. S., Stutzmann, M. and Weber, J., Mat. Res. Soc. Symp. Proc. 256, 159 (1992).CrossRefGoogle Scholar
3. Jung, K. H., Shih, S., Hsieh, T. Y., Campbell, J.C., Kwong, D. L., George, T., Lin, T. L., Liu, H. Y., Zavada, J. and Novak, S., Mat. Res. Soc. Symp. Proc. 256, 31 (1992).CrossRefGoogle Scholar
4. Fathauer, R. W., George, T., Ksendzov, A., Lin, T. L., Pike, W. T., Vasquez, R. P. and Wu, Z. -C., Mat. Res. Soc. Symp. Proc. 256, 165 (1992).CrossRefGoogle Scholar
5. Prokes, S. M., Glembocki, O. J., Bermudez, V. M., Kaplan, R., Friedersdorf, L. E. and Searson, P. C., Mat. Res. Soc. Symp. Proc. 256, 107 (1992).CrossRefGoogle Scholar
6. Van Veen, A., Griffioen, C. C. and Evans, J. H., Mat. Res. Soc. Symp. Proc. 107, 449 (1988);CrossRefGoogle Scholar
Griffioen, C. C., Evans, J. H., DeJong, P. C. and Van Veen, A., Nucl. Inst. Meth. B27, 417 (1987).CrossRefGoogle Scholar
7. Follstaedt, D. M., Myers, S. M. and Stein, H. J., Mat. Res. Soc. Symp. Proc. 279 (elsewhere herein) (1993).Google Scholar
8. Wampler, W. R., Myers, S. M. and Follstaedt, D. M., submitted to Physical Review B.Google Scholar
9. Follstaedt, D. M., Myers, S. M., Wampler, W. R., and Stein, H. J., Proc. 50th Ann. Mtg. Electron Microscopy Society of America (San Francisco Press, 1992), p. 334.Google Scholar
10. Ziegler, J. F., Biersack, J. P. and Littmark, U., The Stopping and Range of Ions in Solids, (Pergamon Press, New York, 1985);Google Scholar
Ziegler, J. F., private communication, 1990.Google Scholar
11. Stein, H. J., Myers, S. M. and Follstaedt, D. M., Journal of Applied Physics, in press.Google Scholar
12. Mazey, D. J. and Evans, J. H., J. Nucl. Mat. 138, 16 (1986).CrossRefGoogle Scholar
13. Tsai, C., Li, K.-H., Sarathy, J., Shih, S., Campbell, J.C., Hance, B. K. and White, J. M., Appl. Phys. Let. 59, 2814 (1991).CrossRefGoogle Scholar