Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T10:14:37.508Z Has data issue: false hasContentIssue false

Photonic coupled systems between on-chip integrated microresonator and core-shell nanoparticle

Published online by Cambridge University Press:  30 January 2015

Y. Xiong
Affiliation:
Universityof Michigan, MI
P. Pignalosa
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA
Y. Yi*
Affiliation:
Universityof Michigan, MI Massachusetts Institute of Technology, Cambridge, MA
*
Get access

Abstract

We have numerically investigated the unique effects of the core-shell nanoparticles on the integrated micro disk resonator. By attaching the core-shell nanoparticle to the disk resonator with gold core and polymer shell, the coupling between the disk resonator and the core-shell nanoparticle results in shift of the resonance wavelength of the disk resonator, depending on the core size/shell thickness of the nanoparticle. An ‘invisibility’ phenomenon found from the coupled core-shell nanoparticle and integrated disk resonator system is emphasized: at certain core size/shell thickness ratio, compared to the original resonance wavelength without core-shell nanoparticle, there is almost no resonance wavelength shift observed. The dependence of the position and number of core-shell nanoparticles is also discussed. Future studies on this coupled photonic systems will stimulate wide variety of applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Li, W. D. and Chou, S. Y., “Solar-blind deep-UV band-pass filter (250-350 nm) consisting of a metal nano-grid fabricated by nanoimprint lithography,” Opt. Express, vol. 18, pp.931-937, Jan. 2010 10.1364/OE.18.000931CrossRefGoogle ScholarPubMed
Liu, N., Tang, M. L., Hentschel, M., Giessen, H., Alivisatos, A. P., “Nanoantenna-Enhanced Gas Sensing in a Single Tailored Nanofocus,” Nat. Mater., vol. 10, pp. 631636, Aug. 2011 10.1038/nmat3029CrossRefGoogle Scholar
Halas, N. J., Lal, S., Chang, W.-S., Link, S., and Nordlander, P., “Plasmons in Strongly Coupled Metallic Nanostructures,” Chem. Rev., vol. 111, pp. 39133961, May 2011 10.1021/cr200061kCrossRefGoogle ScholarPubMed
Chen, S., Svedendahl, M., Kall, M., Gunnarsson, L., Dmitriev, A., “Ultrahigh Sensitivity Made Simple: Nanoplasmonic Label-Free Biosensing with an Extremely Low Limit-of-Detection for Bacterial and Cancer Diagnostics,” Nanotechnology, vol. 20, pp. 434015, Oct 2009 10.1088/0957-4484/20/43/434015CrossRefGoogle ScholarPubMed
Catchpole, K. R., Polman, A., “Plasmonic Solar Cells,” Opt. Express, vol. 16, 2179321800, Dec. 2008 10.1364/OE.16.021793CrossRefGoogle ScholarPubMed
Mayer, K. M. and Hafner, J. H., “Localized Surface Plasmon Resonance Sensors,” Chem. Rev., vol. 111, 38283857, Jun. 2011 10.1021/cr100313vCrossRefGoogle ScholarPubMed
Dickerson, E. B., Dreaden, E. C., Huang, X. H., El-Sayed, I. H., Chu, H., Pushpanketh, S., McDonald, J. F., El-Sayed, M. A., “Gold Nanorod Assisted Near-Infrared Plasmonic Photothermal Therapy (Pptt) of Squamous Cell Carcinoma in Mice,” Cancer Lett., vol. 269, 5766, Sep. 2008 10.1016/j.canlet.2008.04.026CrossRefGoogle ScholarPubMed
Soukoulis, C. M., Linden, S., Wegener, M., “Negative Refractive Index at Optical Wavelengths,” Science, vol. 315, 4749, Jan. 2007 10.1126/science.1136481CrossRefGoogle ScholarPubMed
Frederiksen, M., Bochenkov, V. E., Cortie, M. B., and Sutherland, D. S., “Plasmon Hybridization and Field Confinement in Multilayer Metal−Dielectric Nanocups,” J. Phys. Chem. C, vol. 117, pp. 1578215789, July 2013 10.1021/jp402613uCrossRefGoogle Scholar
Feng, S., Lei, T., Chen, H., Cail, H., Luo, X., and Poon, A. W., “Silicon photonics: from a microresonator perspective,” Laser Photonics Rev. vol. 6, 145177 Apr. 2012 10.1002/lpor.201100020CrossRefGoogle Scholar
Little, B. E., Chu, S. T., and Haus, H. A., “Second-order filtering and sensing with partially coupled traveling waves in a single resonator,”Opt. Lett. vol. 23, 15701572, Oct. 1998 10.1364/OL.23.001570CrossRefGoogle Scholar
Yalcin, A., Popat, K. C., Aldridge, J. C., Desai, T. A., Hryniewicz, J., Chbouki, N., Little, B. E., King, O., Van, V., Chu, S., Gill, D., Anthes-Washburn, M., Unlu, M. S., and Goldberg, B. B., “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. vol. 12, 148155, Jan.2006 10.1109/JSTQE.2005.863003CrossRefGoogle Scholar
Haddadpour, Ali and Yi, Y., “Metallic nanoparticle on micro ring resonator for bio optical detection and sensing,” Biomedical Optics Express, vol. 1, 378384, Sep.2010; M. Ostrowski, P. Pignalosa and Y. Yi, “Higher order optical resonance node detection of integrated disk micro resonator,” Opt. Lett., vol. 36, 3042-3044, Aug. 2011 10.1364/BOE.1.000378CrossRefGoogle Scholar
Koch, B., Carson, L., Guo, C.-M., Leel, C.-Y., Yi, Y., Zhang, J.-Y., Zin, M., Znameroski, S., Smith, T., “Hurricane: A simplified optical resonator for optical-power-based sensing with nano-particle taggants,” Sensors and Actuators B vol. 147, 573580, Apr. 2010 ; S. Wang, K. Broderick, H. Smith, and Y. Yi, “Strong coupling between on chip notched ring resonator and nanoparticle,” Appl. Phys. Lett., vol. 97, 051102, Aug. 2010 10.1016/j.snb.2010.04.004CrossRefGoogle Scholar
Krioukov, E., Klunder, D. J. W., Driessen, A., Greve, J., and Otto, C., “Sensor based on an integrated optical microcavity,” Opt. Lett. vol. 27, 512514 Apr. 2002 10.1364/OL.27.000512CrossRefGoogle ScholarPubMed
Blair, S. and Chen, Y., “Resoant-enhanced evanescent –wave fluorescence biosensing with cylindrical optical cavities,”Appl. Opt. vol. 40, 570582, Feb. 2001 10.1364/AO.40.000570CrossRefGoogle ScholarPubMed