Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-13T05:51:24.139Z Has data issue: false hasContentIssue false

Photothermal microscopy applied to the characterization of UO2-Gd2O3 nuclear fuel pellets

Published online by Cambridge University Press:  17 April 2013

Oscar Martínez
Affiliation:
Fisica, FCEN, Universidad de Buenos Aires, Buenos Aires, CABA, Argentina. Toket SRL, Buenos Aires, CABA, Argentina. CONICET, Buenos Aires, CABA, Argentina
Facundo Zaldivar
Affiliation:
Fisica, Facultad de Ingeniería, Universidad de Buenos Aires, Buenos Aires, CABA, Argentina.
Nélida Mingolo
Affiliation:
Fisica, Facultad de Ingeniería, Universidad de Buenos Aires, Buenos Aires, CABA, Argentina.
Rodolfo Kempf
Affiliation:
Unidad Actividad Combustibles Nucleares. División Caracterización, CNEA, San Martin, Buenos Aires, Argentina.
Get access

Abstract

The photothermal photodeflection technique is shown to provide information on the homogeneity of fuel pellets, pore distribution, clustering detection of pure urania and gadolinea and to provide a two-dimensional mapping of the thermal diffusivity correlated to the composition of the interdiffused Gadolinium and Uranium oxide. Histograms of the thermal diffusivity distribution become a reliable quantitative way of quantifying the degree of homogeneity and the width of the histogram can be used as a direct measure of the homogeneity. These quantitative measures of the homogeneity of the samples at microscopic levels provides a protocol that can be used as a reliable specification and quality control method for nuclear fuels, substituting with a single test a battery of expensive, time consuming and operator dependent techniques.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Durazzo, M., Oliveira, F.B.V., Urano de Carvalho, E.F., Riella, H.G., Phase studies in the UO2–Gd2O3 system, Journal of Nuclear Materials 400 (2010) 183188 CrossRefGoogle Scholar
TECDOC-844, International Atomic Energy Agency, Characteristics and Use of Urania-Gadolinia Fuels, ISSN 1011–4289, Viena, Austria, 1995.Google Scholar
Hälldahl, L., Eriksson, S., Characterization of homogeneity in (U, Gd)O2-pellets, Journal of Nuclear Materials 153 (1988) 6670.CrossRefGoogle Scholar
Martínez, O.E., Balzarotti, F., Mingolo, N., Thermoreflectance and photodeflection combined for microscopic characterization of metallic surfaces, Applied Physics B 90 (2008) 6977.CrossRefGoogle Scholar
Crossa Archiopoli, U., Mingolo, N., Martínez, O. E, Two-dimensional mapping of micro-hardness increase on surface treated steel determined by photothermal deflection microscopy, Surface and Coatings Technology, 205 (2011) 30873092.CrossRefGoogle Scholar
Crossa Archiopoli, U., Mingolo, N., Martínez, O. E., Two-dimensional imaging of thermal diffusivity in metals by scanning photodeflection detection, Journal of Applied Physics 107 (2010) 023520–1 to 6.CrossRefGoogle Scholar
Bincheng, Li, Roger, J. P., Pottier, L., and Fournier, D., Complete thermal characterization of film-on-substrate system by modulated thermoreflectance microscopy and multiparameter fitting, J. Appl. Phys. 86, (1999). 5314–1to3.Google Scholar
Fournier, D., Thermal-Wave Probing at Various Spatial Scales, MRS Bulletin 26, (2001) 465 -470CrossRefGoogle Scholar
Rochais, D., Le Houëdec, H., Enguehard, F., Jumel, J., and Lepoutre, F., Microscale thermal characterization at temperatures up to 1000°C by photoreflectance microscopy. Application to the characterization of carbon fibres, J. Phys. D 38, (2005).14981503.CrossRefGoogle Scholar
Rosencwaig, A., Opsal, J., Smith, W. L, and Willenborg, D. L, Detection of thermal waves through optical reflectance, Appl. Phys. Lett. 46, (1985). 10131015.CrossRefGoogle Scholar
Rosencwaig, A., Opsal, J., and Willenborg, D. L., Thin-Film thickness measurements with thermal waves, Appl. Phys. Lett. 43, (1983). 166168.CrossRefGoogle Scholar
Opsal, , Rosencwaig, A., Willenborg, D. L., Thermal-wave detection and thin-film thickness measurements with laser beam deflection, Appl. Optics 22 (1983) 31693176.CrossRefGoogle ScholarPubMed
Singh, M. P., Thakur, C. S., Shalini, K., Banerjee, S., Bhat, N., Shivashankar, S. A.,. Structural, optical, and electrical characterization of gadolinium oxide films deposited by low-pressure metalorganic chemical vapor deposition, J. Appl. Phys. 96 (2004) 56315637 CrossRefGoogle Scholar
Fink, J.K., Thermophysical properties of uranium dioxide, Journal of Nuclear Materials 279 (2000) 118.CrossRefGoogle Scholar
Amaya, M., Hirai, M., Sakurai, H., Ito, K., Sasaki, M., Nomata, T., Kamimura, K., Iwasaki, R., Thermal conductivities of irradiated UO2 and (U, Gd)O2 pellets, Journal of Nuclear Materials 300 (2002) 5764.CrossRefGoogle Scholar