Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-15T07:18:02.716Z Has data issue: false hasContentIssue false

Physical Characterization Of Microelectronic Polymeric Thin Films

Published online by Cambridge University Press:  15 February 2011

Stephen D. Senturia
Affiliation:
Microsystems Technology Laboratories, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
Susan C. Noe
Affiliation:
Microsystems Technology Laboratories, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
Jeffrey Y. Pan
Affiliation:
Microsystems Technology Laboratories, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
Get access

Abstract

The measurement of the mechanical properties and adhesion of polymeric thin films and coatings poses a number of technical problems. Elastic and viscoelastic properties, residual stress, adhesion, the effects of extended cure, and the effects of adsorbed moisture and process reagents are all critical. A particular challenge is to develop measurement methods which can be used with actual samples, preferably non-destructively. This paper examines a number of methods which have been developed to make these measurements, with emphasis on methods which are sensitive enough to look at the effects of process variation and the effects of moisture exposure. Suspended-membrane methods for measuring elastic and viscoelastic properties, residual stress, and adhesion are combined with optical methods for determining index of refraction and birefringence to yield a family of techniques for performing physical characterization. Recent results on the effects of extended cure and moisture uptake on elastic properties, residual stress, and optical properties will be presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Proc. First Int'l. Conf. on Polyimides, 1982, published as: Mittal, K. L., ed., Polyimides - Synthesis, Characterization, and Applications (Plenum Press, New York, 1984).Google Scholar
2. Proc. Second Int'l Conf. on Polyimides, 1985, published as: Weber, W. D. and Gupta, M. R., eds., Recent Advances in Polyimide Science and Technology (Mid-Hudson Section, Society of Plastics Engineers, Poughkeepsie, New York, 1987).Google Scholar
3. Proc. Third Int'l Conf. on Polyimides, 1988, published as: Feger, C., Khojasteh, M. M., and McGrath, J.E, eds., Polyimides: Materials, Chemistry and Characterization (Elsevier, New York, 1989).Google Scholar
4. Bowden, M. J. and Turner, S. Richard, eds., Polymers for High Technology: Electronics and Photonics, ACS Symposium Volume 346, (American Chemical Society, Washington, D.C., 1987). 175 CrossRefGoogle Scholar
5. Jaccodine, R., Jackson, K. A., and Sundahl, R. C., eds., Electronic Packaging Materials Science III, Materials Research Society Symposium Proceedings, Volume 108, (Materials Research Society, Pittsburgh, 1988).Google Scholar
6. Lupinski, J. and Moore, R. S., eds. Polymeric Materials for Electronics Packaging and Interconnection, ACS Symposium Volume 407, (American Chemical Society, Washington, D.C., 1989).Google Scholar
7. Proc. PME'89, published as: Polymers for Microelectronics – Science and Technology (Kodansha, Tokyo, 1990).Google Scholar
8. Crowe, K., M.S. Thesis, Dept. of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 1985 (unpublished).Google Scholar
9. StressGauge, Ionic Systems, Inc.Google Scholar
10. Geldermans, P., Goldsmith, C., and Bendetti, F., in Ref [1], p. 695.Google Scholar
11. Hoffman, R. W., in Dupey, C. H. S. and Cachard, A., eds. Physics of Nonmetallic Thin Films, NATO Advanced Study Institutes, Plenum Press, Vol B–14, p. 273 (1976).CrossRefGoogle Scholar
12. Beams, J. W., in Neugebauer, C. A., ed., Structure and Properties of Thin Films, p. 183 (1959).Google Scholar
13. Bromley, E. I., Randal, J. N., Flanders, D. C., and Mountain, R. W., J. Vac. Sci. Tech. B, 1, 1364, (1983).CrossRefGoogle Scholar
14. Allen, M. G., Mehregany, M., Howe, R. T., and Senturia, S. D., Appl. Phys. Letters,.51, 241 (1987).Google Scholar
15. Maseeh, F., Schmidt, M. A., Allen, M. G., and Senturia, S. D., Technical Digest, 1988 IEEE Solid-State Sensor and Actuator Workshop, Hilton, p. 84.Google Scholar
16. Tabata, O., Kawahata, K., Sugiyama, S., Inagaki, H., and Igarashi, I., Technical Digest of the 7th Sensor Symposium, Tokyo, 1988, IEE, Tokyo, p. 173.Google Scholar
17. Lin, P. and Senturia, S. D., Mat. Res. Soc. Symp. Proc. Vol.188, p.41, (1990).Google Scholar
18. Pan, J., Lin, P., Maseeh, F., and Senturia, S. D., Technical Digest, IEEE Solid-State Sensor and Actuator Workshop, Hilton Head, (IEEE, New York, 1990), p. 70.Google Scholar
19. Pan, J. Y. and Senturia, S. D., Technical Digest, SPE ANTEC '91, Montreal, May 1991, in press.CrossRefGoogle Scholar
20. Maseeh, F. and Senturia, S. D., in Ref [3], p.575.Google Scholar
21. Maseeh, F., Ph.D. Thesis, Dept. of Civil Engineering, Massachusetts Institute of Technology, Cambridge, MA, 1990, (unpublished).Google Scholar
22. Bauer, C. and Farris, R., in Ref (3], p 549.Google Scholar
23. Maden, M. and Farris, R., Technical Digest, SPE ANTEC'91, Montreal, May 1991, in pressGoogle Scholar
24. Evans, A. G. and Hutchineson, J. W., Int'l. J. Solids and Structures, 20, 451 (1986).Google Scholar
25. Mittal, K. L., Electrocomponent Sci. and Tech., 3 21 (1976).Google Scholar
26. Kinloch, A. J., J. Mat. Sci., 15, 2141 (1980).Google Scholar
27. Wu, S., Polymer Interfaces and Adhesion, (Marcel Dekker, 1982).Google Scholar
28. Dannenberg, H., J. Appl. Polymer Sci., 5, 125 (1961).Google Scholar
29. Hinkley, J., J. Adhesion, 16, 115 (1983).CrossRefGoogle Scholar
30. Allen, M. G. and Senturia, S. D., J. Adhesion, 25, 303 (1988).Google Scholar
31. Allen, M. G. and Senturia, S. D., J. Adhesion, 29, 219 (1989).CrossRefGoogle Scholar
32. Allen, M. G. and Senturia, S. D., Proc. ACS Division of Polymeric Materials Science and Engineering, 56, 735 (1987).Google Scholar
33. Allen, M. G., Nagarkar, P., and Senturia, S. D., in Ref [3], p.705.Google Scholar
34. Noe, S. C., Pan, J. Y., and Senturia, S. D., Technical Digest, SPE ANTEC ‘91, Montreal, May, 1991, in press.Google Scholar
35. P.Russell, T., Gugger, H., and Swalen, J. D., J. Polymer Sci: Phys., 21, 1745 (1983).Google Scholar
36. Takahashi, N., Yoon, D., and Parrish, W., Macromolecules, 17, 2583 (1984).Google Scholar
37. Pryde, C. A., J. Polymer Sci.: Chem., 22, 711 (1989). 176Google Scholar
38. Pryde, C. A., SPE ANTEC '90, p. 439.Google Scholar
39. Schlotter, N. E. and Rabolt, J. F., J. Phys. Chem., 88, 2062 (1984).Google Scholar
40. Prest, W. M., and Luca, D. J., J. Appl. Phys., 50, 6067 (1979).Google Scholar
41. Prest, W. M., and Luca, D. J., J. Appl. Phys., 51, 5170 (1980).Google Scholar
42. Savatinova, I., Tonchev, S., Todorov, R., Venkova, E., Liarokapis, E., and Anastassakis, E., J. Appl. Phys., 67, 2051 (1990).CrossRefGoogle Scholar