Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-15T01:08:10.325Z Has data issue: false hasContentIssue false

Physicochemical and electrochemical properties of imidazolium ionic liquids: Cycling performance of low cost lithium ion batteries with LiFePO4 cathode

Published online by Cambridge University Press:  20 May 2013

Hassan. Srour
Affiliation:
UMR 5265 CNRS- C2P2, 43 Boulevard du 11 Novembre 1918, 69616 Villeurbanne, France. CEA-Liten, 17 rue des Martyrs 38054 Grenoble Cedex 9, France.
Hélene. Rouault
Affiliation:
CEA-Liten, 17 rue des Martyrs 38054 Grenoble Cedex 9, France.
Catherine C. Santini*
Affiliation:
UMR 5265 CNRS- C2P2, 43 Boulevard du 11 Novembre 1918, 69616 Villeurbanne, France.
Get access

Abstract

This manuscript reports investigation conducted on room temperature ionic liquids (RTILs) C1CnImNTf2/n=4, 6 in order to use it as electrolyte solvent in lithium ion battery. The ionic conductivity, viscosity, ion self-diffusion coefficients, and electrochemical stability in C1CnImNTf2 are presented. A solution of C1CnImNTf2/n=4, 6 containing 1.6 mol.L-1 of LiNTf2 has been used as the electrolyte in a Li-ion battery with graphite and LiFePO4 as respectively negative and positive active materials. [Li][C1C6Im][NTf2] shows the best cycling performance: a capacity up to 120 mAh.g-1 at C/10 rate at 25°C.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Armand, M., Endres, F., Macfarlane, D.R., Ohno, H., Scrosati, B., Nat. Mater., 8, 621 (2009).CrossRefGoogle Scholar
Borgel, V., Markevich, E., Aurbach, D., Semrau, G., Schmidt, M., J. Power Sources., 189, 331 (2009).CrossRefGoogle Scholar
Padhi, A.K., Nanjundaswany, K.S., and Goodenough, J. B., J. Electrochem. Soc., 144, 1188 (1997).CrossRefGoogle Scholar
Srour, H., Rouault, H., Santini, C. C., J. Electrochem. Soc., 160, 781785, (2013).CrossRefGoogle Scholar
Yamaki, J. I., Tobishima, S. I., Sakurai, Y., Saito, K. I., and Hayashi, K., J. Appl. Electrochem., 28, 135140 (1997).CrossRefGoogle Scholar
Aurbach, D., Zinigrad, E., Cohen, Y. and Teller, H., Solid State Ionics., 148, 405416 (2002).CrossRefGoogle Scholar
Magna, L., Chauvin, Y., Niccolai, G. P., Basset, J. M., Organometallics., 22, 44184425 (2003).CrossRefGoogle Scholar
Tokuda, H., Hayamizu, K., Ishii, K., Susan, M. A. H., Watanabe, M., J. Phys. Chem B., 109, 61036110 (2005).CrossRefGoogle Scholar
Umebayashi, Y., Mori, S., Fujii, K, Tsuzuki, S., Seki, S., Hayamizu, K., Ishiguro, S., J. Phys. Chem. B., 114, 6513. (2010).CrossRefGoogle Scholar
Hayyan, M., Mjalli, M., Hashim, F. S., Al, M. A., Mei, N. I. M., T. X. ;J. Ind. Eng. Chem., 19, 106112 (2013).CrossRefGoogle Scholar
Srour, H., Rouault, H., Santini, C. C., J. Electrochem Soc., 160, 781785 (2013).CrossRefGoogle Scholar