Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-04T05:29:11.453Z Has data issue: false hasContentIssue false

Piezoelectric Materials for Advanced Integrated RF Components

Published online by Cambridge University Press:  01 February 2011

Mahmoud Al Ahmad
Affiliation:
al-ahmad@laas.fr, LAAS CNRS, ., 7 avenue du Colonel Roche, Toulouse Cedex 4, N/A, France
Fabio Coccetti
Affiliation:
LAAS CNRS, 7 avenue du Colonel Roche, Toulouse Cedex 4, France
Robert Plana
Affiliation:
LAAS CNRS, 7 avenue du Colonel Roche, Toulouse Cedex 4, France
Get access

Abstract

This paper will first address the piezoelectric material characterization using a capacitance measurement technique. An original simple and efficient technique for the determination of the d33 piezoelectric coefficient of lead zirconate titanate thin films is described. Classical capacitor plate theory and piezoelectric material analysis are used to calculate the capacitance variation in lead zirconate titanate film, enabling piezo-electric coefficient to be determined. The technique outlined here avoids the use of mechanical/optical apparatus that may require heavy preparation of sample substrate geometry. Then, this work also treats design and fabrication issues associated with innovative tunable front-end components which combine two different ceramic technologies, namely multilayer ceramic circuit boards (low temperature cofired ceramics or LTCC) and piezoelectric actuator technology within a single device.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Tuttlebee, Walter, Software de ned radio, Chichester: J. Wiley & Sons, 2002.Google Scholar
[2] Rahman, Mohammed, Shamsaifar, Khosro, Electronically tunable LTCC based multilayer lter for mobile handset applications, IEEE MTT-S Int. Microwave Symp. Dig., vol. 3, pp. 17671770, June 2003.Google Scholar
[3] Uhre, J. and Hoefer, W. J. R., Tunable microwave and millimeterwave bandpass lters, IEEE Trans. Microwave Theory & Tech., vol. 39, no. 4, pp. 643653, April 1991.Google Scholar
[4] Virdee, B. S., Current techniques for tuning dielectric resonators, Microwave J., vol. 46, no. 10 pp. 130138, October 1998.Google Scholar
[5] Kageyama, K, Satio, K, Utaki, H, and Yamamoto, T, Tunable active lters having multilayer structure using LTCC, IEEE Trans. Microwave Theory & Tech., vol. 49, no. 12, pp. 24212424, December 2001.Google Scholar
[6] Nieminen, H, Ermolov, V, Nybergh, K, Silanto, S and Ry-hnen, T, Microelectromechanical capacitors for RF applications, J. of Micromech. Microeng, pp. 177186, December 2002.Google Scholar
[7] Tombak, Ali, Maria, Jon-Paul, Ayguavives, Franisco T., Jin, Zhang, Stauf, Gregory T., Kingon, Angus I., and Mortazawi, Amir, Voltagecontrolled RF lters employing thin- lm barium-strontium-titanate tunable capacitors, IEEE Trans. Microwave Theory & Tech., vol. 51, no. 2, pp. 462467, February 2003.Google Scholar
[8] York, R., Nagra, A., Erker, E., Taylor, T., Periaswamy, P., Speck, J., er, S. Stri, Kaufmann, D., Auciello, O., Microwave integrated circuits using thin- lm BST, IEEE International Symp. on Applications of Ferroelectrics (ISAF), vol. 1, pp. 195200, July-Aug. 2000.Google Scholar
[9] Paratek Microwave Inc., Thin lm electronically tunable preselectors for software dened radios, Microwave J., vol. 47, no. 10, pp. 138144, October 2004.Google Scholar
[10] Yun, Tae-Yeoul and Change, Kai, Piezoelectric-transducercontrolled tunable microwave circuits, IEEE Trans. Microwave Theory & Tech., vol. 50, no. 5, pp. 13031310, May 2002.Google Scholar
[11] Zhang, Q. Q., Gross, S. J., Tadigadapa, S., son, T. N. Jack-, Djuth, F. T., and Trolier-McKinstry, S., Sensors and Actuators A 105, 9197 (2003).Google Scholar
[12] Zhang, Q. M., Pan, W. Y., and Cross, L. E., J. Appl. Phys. 63, 24926 (1988).Google Scholar
[13] Kholkin, A. L., Wutchrich, C. K., Taylor, D. V., and Setter, N., Rev. Sci. Instrum. 67, 193541 (1996).Google Scholar
[14] Huang, C. H. and Ma, C. C., J. Acoust. Soc. Amer. 109, 27802788 (2001).Google Scholar
[15] Dubois, M.-A. and Muralt, P., Sensors Actuators A 77, 106–12 (1999).Google Scholar
[16] Cattan, E., Haccart, T., and Remiens, D., J. Appl. Phys. 86, 701723 (1999).Google Scholar
[17] Shepard, J. F., Moses, P. J., and Trolier-McKinstry, S., Sensors Actuators A 71, 1338 (1998).Google Scholar
[18] Kim, D.-G. and Kim, H.-G., Integrated Ferroelect. 24, 107–19 (1999).Google Scholar
[19] Al-Ahmad, Mahmoud and Plana, Robert, “A Novel Method for PZT Thin Film Piezoelectric Coe cients Determination Using Conventional Impedance Analyzer,” Processidnings of the European Microwave Week, pp.202 205, Munich/Germany, October 2007.Google Scholar
[20] Rogacheva, Nellya N., The Theory of Piezoelectric Shells and Plates; CRC press LLC, N. Y., US, 1994.Google Scholar
[21] Wadell, Brian C., Transmission Line Design Handbook, Norwood: Artech House, 1991.Google Scholar
[22] e, B. Ja, Cook, W. R., and e, H. Ja, Piezoelectric Ceramics. R. A. N. Publishers, Marietta, OH, 1971.Google Scholar
[23] VIBRIT 1334 from Argillon GmbH, Bahnhofstrasse 43, 96257 Redwitz, Germany, www.piezo-power.com.Google Scholar
[24] Al-Ahmad, M., Maenner, R., Matz, R. and Russer, P., “Wide Piezoelectric Tuning of LTCC Bandpass Filters,” In 2005 IEEE MTT-S Int. Microwave Symp. Dig., 12.-17. June 2005, Long Beach, USA, pages 12751278, June 2005.Google Scholar
[25] E-Solder 3021 from EPOXY Produkte GmbH, Gunther-strasse 1, 64658 Fuerth /Odw, Germany.Google Scholar