Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T12:41:53.440Z Has data issue: false hasContentIssue false

Piezo-resistive Pressure Sensor Array with Photo-thermally Reduced Graphene Oxide

Published online by Cambridge University Press:  11 September 2015

Rouzbeh Kazemzadeh
Affiliation:
School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, B.C. Canada V3T 0A3
Woo Soo Kim*
Affiliation:
School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, B.C. Canada V3T 0A3
Get access

Abstract

We report a highly sensitive pressure sensor fabricated by photo-thermally reduced Graphene oxide (GO) with silver nano wires (AgNWs). Pressure sensors are fabricated in form of the inter-digitated capacitors (IDC) composed of two finger electrodes with pattern width of 500 µm. The fabricated IDCs are compared to the previously reported MEMS-based pressure sensors' sensitivity. The fabricated sensor is easily attachable on any surface for monitoring applied forces or pressure and maintains excellent electrical conductivity under high mechanical stress and thus holds promise for durable bio-medical sensors.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Compaan, A. D., Matulionis, I., and Nakade, S., “Laser scribing of polycrystalline thin films,” Opt. Lasers Eng., vol. 34, no. 1, pp. 1545, Jul. 2000.CrossRefGoogle Scholar
Zhang, Y., Guo, L., Wei, S., He, Y., Xia, H., Chen, Q., Sun, H.-B., and Xiao, F.-S., “Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction,” Nano Today, vol. 5, no. 1, pp. 1520, Feb. 2010.CrossRefGoogle Scholar
Kymakis, E., Petridis, C., Anthopoulos, T. D., and Stratakis, E., “Laser-Assisted Reduction of Graphene Oxide for Flexible, Large-Area Optoelectronics,” IEEE J. Sel. Top. Quantum Electron. vol. 20, no. 1, pp. 106115, Jan. 2014.CrossRefGoogle Scholar
Zhang, M. and Wang, Z., “Nanostructured silver nanowires-graphene hybrids for enhanced electrochemical detection of hydrogen peroxide,” Appl. Phys. Lett., vol. 102, no. 21, p. 213104, May 2013.CrossRefGoogle Scholar
Jurewicz, I., Fahimi, A., Lyons, P. E., Smith, R. J., Cann, M., Large, M. L., Tian, M., Coleman, J. N., and Dalton, A. B., “Insulator-Conductor Type Transitions in Graphene-Modified Silver Nanowire Networks: A Route to Inexpensive Transparent Conductors,” Adv. Funct. Mater., vol. 24, no. 48, pp. 75807587, Dec. 2014.CrossRefGoogle Scholar
Lee, M.-S., Lee, K., Kim, S.-Y., Lee, H., Park, J., Choi, K.-H., Kim, H.-K., Kim, D.-G., Lee, D.-Y., Nam, S., and Park, J.-U., “High-Performance, Transparent, and Stretchable Electrodes Using Graphene–Metal Nanowire Hybrid Structures,” Nano Lett., vol. 13, no. 6, pp. 28142821, Jun. 2013.CrossRefGoogle Scholar
Kholmanov, I. N., Magnuson, C. W., Aliev, A. E., Li, H., Zhang, B., Suk, J. W., Zhang, L. L., Peng, E., Mousavi, S. H., Khanikaev, A. B., Piner, R., Shvets, G., and Ruoff, R. S., “Improved Electrical Conductivity of Graphene Films Integrated with Metal Nanowires,” Nano Lett., vol. 12, no. 11, pp. 56795683, Nov. 2012.CrossRefGoogle Scholar
Eda, G. and Chhowalla, M., “Chemically Derived Graphene Oxide: Towards Large-Area Thin-Film Electronics and Optoelectronics,” Adv. Mater., vol. 22, no. 22, pp. 23922415, Jun. 2010.CrossRefGoogle Scholar
Coraux, J., N’Diaye, A. T., Busse, C., and Michely, T., “Structural coherency of graphene on Ir(111),” Nano Lett., vol. 8, no. 2, pp. 565570, Feb. 2008.CrossRefGoogle Scholar
Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S. K., Colombo, L., and Ruoff, R. S., “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils,” Science, vol. 324, no. 5932, pp. 13121314, Jun. 2009.CrossRefGoogle Scholar
Zhu, S.-E., Ghatkesar, M. K., Zhang, C., and Janssen, G. C. a. M., “Graphene based piezoresistive pressure sensor,” Appl. Phys. Lett., vol. 102, no. 16, p. 161904, Apr. 2013.CrossRefGoogle Scholar
Lee, J. H., Lee, P., Lee, D., Lee, S. S., and Ko, S. H., “Large-Scale Synthesis and Characterization of Very Long Silver Nanowires via Successive Multistep Growth,” Cryst. Growth Des., vol. 12, no. 11, pp. 55985605, Nov. 2012.CrossRefGoogle Scholar
Petridis, C., Lin, Y.-H., Savva, K., Eda, G., Kymakis, E., Anthopoulos, T. D., and Stratakis, E., “Post-fabrication, in situ laser reduction of graphene oxide devices,” Appl. Phys. Lett., vol. 102, no. 9, p. 093115, Mar. 2013.CrossRefGoogle Scholar
Zhang, J., Yang, H., Shen, G., Cheng, P., Zhang, J., and Guo, S., “Reduction of graphene oxide via L-ascorbic acid,” Chem. Commun., vol. 46, no. 7, pp. 11121114, Feb. 2010.CrossRefGoogle Scholar
Sokolov, D. A., Shepperd, K. R., and Orlando, T. M., “Formation of Graphene Features from Direct Laser-Induced Reduction of Graphite Oxide,” J. Phys. Chem. Lett., vol. 1, no. 18, pp. 26332636, Sep. 2010.CrossRefGoogle Scholar
Kim, J., Jong, J. H., and Kim, W. S., “Repeatedly Bendable Paper Touch Pad via Direct Stamping of Silver Nanoink With Pressure-Induced Low-Temperature Annealing,” IEEE Trans. Nanotechnol., vol. 12, no. 6, pp. 11391143, Nov. 2013.CrossRefGoogle Scholar