Published online by Cambridge University Press: 21 February 2011
The growth of undoped and doped GaN and AlGaN films on off-axis 6H SiC substrates was investigated using plasma-assisted molecular beam epitaxy (MBE). Smooth and crack-free GaN and AlGaN films were obtained; the best results occurred at the highest growth temperature studied (800°C) and with a 40 to 50 nm A1N buffer layer grown at the same temperature. Carrier concentrations of up to n = 4 × 1020 cm−3 were accomplished with silicon, with a 40 to 50% activation rate as determined by secondary ion mass spectrometry (SIMS). Unintentionally doped AlxGa,.xN (x≈0.1) was n-type with a carrier concentration of 7 × 1018 cm−3. N-type AlGaN (x≈0.1)/p-type 6H SiC (0001) heterostructures showed excellent junction characteristics with leakage currents of less than 0.1 nA at 5 V reverse bias at room temperature and 0.5 nA at 200°C operating temperature.