Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T04:52:42.986Z Has data issue: false hasContentIssue false

Plutonium Environment in Lanthanide Borosilicate Glass

Published online by Cambridge University Press:  01 February 2011

Sergey Stefanovsky
Affiliation:
profstef@mtu-net.ru, SIA Radon, 7th Rostovskii lane 2/14, Moscow, 119121, Russian Federation
Andrey Shyriaev
Affiliation:
shiryaev@crys.ras.ru, Institute of Crystallography RAS, Moscow, Russian Federation
Yan V. Zubavichus
Affiliation:
zub@rambler.ru, RRC "Kurchatov Institute", Moscow, Russian Federation
James C. Marra
Affiliation:
james.marra@srnl.doe.gov, Savannah River National Laboratory, Aiken, South Carolina, United States
Get access

Abstract

Two lanthanide borosilicate (LaBS) glasses containing 9.5 and 5.0 wt.% PuO2 prepared at 1500 °C consisted of a vitreous phase and minor crystalline PuO2 (or PuO2-HfO2 solid solution with minor HfO2) and britholite-type phases. X-ray absorption spectra of Pu LIII edge in the as-prepared and stored for various periods LaBS glasses were recorded, analyzed and compared with the spectra of crystalline PuO2. Pu in the as-prepared glass existed in predominantly tetravalent form (Pu4+ ions) but its storage in air results in partial oxidation as was seen from shift of peak energy values. In the structure of the as-prepared glass, Pu4+ ions had a co-ordination number (CN) close to 6 (˜6.3) and were located within the axially squeezed octahedra with five equidistant oxygen ions at a distance of 2.265±0.015 Å and one – at shorter distance (2.130±0.010 Å) from the Pu4+ ion. The Pu—Pu(M) distance (second co-ordination shell) was 3.675±0.015 Å. “Aging” of the LaBS glass with transformation of some fraction of Pu into penta- or/and hexavalent form was accompanied by a structural transformation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Chamberlain, D.B. Hanchar, J.M. Emery, J.W. Hoh, J.C. Wolf, S.F. Finch, R.J. Bates, J.K. Ellison, A.J.G. and Dingwell, D.B. Mater. Res. Soc. Symp. Proc. 465, 12291236 (1997).Google Scholar
2 Bibler, N.E. Ramsey, W.G. Meaker, T.F. and Pareizs, J.M. Mater. Res. Soc. Symp. Proc. 412, 6570 (1996).Google Scholar
3 Riley, B.J. Vienna, J.D. and Schweiger, M.J. Mater. Res. Soc. Symp. Proc. 608, 677682 (2000).Google Scholar
4 Strachan, D.M. Bakel, A.J. Buck, E.C. Chamberlain, D.B. Fortner, J.A. Mertz, C.J. Wolf, S.F. Bourcier, W.F., Ebbinghaus, B.B. Shaw, H.F. Konynenburg, R.A. Van, McGrail., B.P., Vienna, J.D. Marra, J.C. and Peeler, D.K. Waste Management '98 Conf., Tucson, AZ, 1998. ID 65–08, CD-ROM.Google Scholar
5 Veal, B.W. Mundy, J.N. and Lam, D.J. Actinides in Silicate Glasses, Handbook of the Physics and Chemistry of Actinides, edited Freeman, A.J. and Lander, G.H. (Elsevier Science Publishers B.V., 1987). p. 271309.Google Scholar
6 Marra, J.C. Crawford, C.L. and Bibler, N.E. Glass Fabrication and Product Consistency Testing of Lanthanide Borosilicate Frit X Composition for Plutonium Disposition. WSRC-STI-2006-00318. SRNL, 2006.Google Scholar
7 Maslakov, K.I. Stefanovsky, S.V. Teterin, A.Yu., Teterin, Yu.A. and Marra, J.C. Glass Phys. Chem. 35, 2228 (2008).Google Scholar
8 Shiryaev, A.A. Zubavichus, Ya.V. Stefanovsky, S.V. Ptashkin, A.G. and Marra, J.C. Mater. Res. Soc. Symp. Proc., 1193, 259265 (2010).Google Scholar
9 Ravel, B. and Newville, M., J. Synchrotron Radiat. 12 537541 (2005).Google Scholar
10 Ankudinov, A.L. and Rehr, J.J. Phys. Rev. B 56 17121716 (1997).Google Scholar
11 Funke, H., Scheinost, A.C. and Chukalina, M., Phys. Rev. B, 71, 094110 (2005).Google Scholar
12 Funke, H., Chukalina, M. and Scheinost, A.C. J. Synchrotron Radiat. 14, 426432 (2007).Google Scholar
13www.esrf.fr/exp facilities/BM20/Software/Wavelets.htmlGoogle Scholar
14 Conradson, S.D. Begg, B.D. Clark, D.L. Auwer, C.D. Espinosa-Faller, F.J., Gordon, P.L. Hess, N.J. Hess, R., Keogh, D.W. Morales, L.A. Neu, M.P. Runde, W., Tait, C.D. Veirs, D.K. and Villela, P.M. Inorg. Chem. 42 37153717 (2003).Google Scholar
15 Conradson, S.D. Abney, K.D. Begg, B.D. Brady, E.D. Clark, D.L. Auwer, C.D. Ding, M., Dorhout, P.K., Espinosa-Faller, F.J., Gordon, P.L. Haire, R.G. Hess, N.J. Hess, R., Keogh, D.W. Lander, G.H., Lupinetti, A.J. Morales, L.A. Neu, M.P. Palmer, P.D. Paviet-Hartmann, P., Reilly, S.D. Runde, W.H., Tait, C.D. Veirs, D.K. and Wastin, F., Inorg. Chem. 43 116131 (2004).Google Scholar
16 Hess, N.J. Weber, W.J. and Conradson, S.D. J. Alloy Compd. 271–273, 240243 (1998).Google Scholar