Hostname: page-component-5f745c7db-6bmsf Total loading time: 0 Render date: 2025-01-06T07:24:05.880Z Has data issue: true hasContentIssue false

Polarization-Induced 3-Dimensional Electron Slabs in Graded AlGaN Layers

Published online by Cambridge University Press:  01 February 2011

John Simon
Affiliation:
jsimon@nd.edu, University of Notre Dame, 275 Fitzpatrick Hall, Notre Dame, IN, 46556, United States, (574)6312926, (574)6314393
Kejia Wang
Affiliation:
kwang@nd.edu, University of Notre Dame, Electrical Engineering
Huili Xing
Affiliation:
hxing@nd.edu, University of Notre Dame, Electrical Engineering, United States
Debdeep Jena
Affiliation:
djena@nd.edu, University of Notre Dame, Electrical Engineering, United States
Siddharth Rajan
Affiliation:
srajan@ece.ucsb.edu, University of California Santa Barbara, Electrical and Computer Engineering, United States
Get access

Abstract

By compositionally grading AlGaN layers over different thicknesses, high mobility electron gases are produced by polarization-induced doping. Temperature dependent Hall and capacitance-voltage measurements were performed on these AlGaN layers, and two degrees of freedom are found for choosing the carrier concentration of these slabs. Carrier mobilities determined from Hall measurements are observed to be much higher than impurity doped structures of similar carrier densities. Alloy and phonon scattering are determined to be the major contributors limiting the mobility of the electron in the graded layers. This form of polarization-induced doping offers an attractive alternative to the traditional doping techniques, and may be used for highly conductive AlGaN layers with high Al composition, both for lateral and vertical transport.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Pearton, S. J., Abernathy, C. R., Overberg, M. E., Thaler, G. T., Norton, D. P., Theodoropoulou, N., Hebard, A. F., Park, Y. D., Ren, F., Kim, J., and Boatner, L. A.. J. Appl. Phys., 93, 2003.Google Scholar
[2] Kozodoy, P., Smorchkova, I. P., Hansen, M., Xing, H., DenBaars, S. P., Mishra, U. K., Saxler, A. W., Perrin, R., and Mitchel, W. C.. J. Appl. Phys., 75:2444, 1999.Google Scholar
[3] Pophristic, M., Guo, S. P., and Peres, B.. Appl. Phys. Lett., 82(24):4289, 2003.CrossRefGoogle Scholar
[4] Bernardini, F., Fiorentini, V., and Vanderbilt, D.. Phys. Rev. B, 56:R10 024, 1997.CrossRefGoogle Scholar
[5] Jena, D., Heikman, S., Green, D., Buttari, D., Coffie, R., Xing, H., Keller, S., DenBaars, S., Speck, J., Mishra, U. K., and Smorchkova‥, I. P. Appl. Phys. Lett., 81:4395, 2002.CrossRefGoogle Scholar
[6] Chini, A., Wittich, J., Heikman, S., Keller, S., DenBaars, S. P., and Mishra, U. K.. Elec. Dev. Lett., 25(2):55, 2004.CrossRefGoogle Scholar
[7] Snider, G. L.. 1DPoisson, http://www.nd.edu/~gsnider/.Google Scholar
[8] Kroemer, H., Chen, Wu-Yi Jr., Harris, J.S., and Edwall, D.D.. Appl. Phys. Lett., 36(4):295, 1980.CrossRefGoogle Scholar
[9] Seeger, K.. Semiconductor Physics, An Introduction. Springer Verlag, Berlin, 6th edition, 1999.Google Scholar
[10] Look, D. C. and Molnar, R. J.. Appl. Phys. Lett., 70:3377, 1997.Google Scholar
[11] Jena, D., Gossard, A. C., and Mishra, U. K.Appl. Phy. Lett., 76:1707, 2000.CrossRefGoogle Scholar
[12] Weimann, N. G., Eastman, L. F., Doppalapudi, D., Ng, H. M., and Moustakas, T. D.. J. Appl. Phys., 83:3656, 1998.CrossRefGoogle Scholar
[13] Joyce, W. B. and Dixon, R. W.. Appl. Phys. Lett., 31:354, 1977.Google Scholar
[14] Hamaguchi, C. Basic Semiconductor Physics, page 280, 2001.Google Scholar
[15] Hsu, L. and Walukiewicz, W.. J. Appl. Phys., 89:1783, 2001.Google Scholar
[16] Khan, M. A. and Kuznia, J. N. and Olson, D. T. and George, T. and Pike, W. T‥ Appl. Phys. Lett., 63:3470, 1993.Google Scholar