Published online by Cambridge University Press: 01 February 2011
Screen-printing is studied as deposition technique for conjugated material based layers. Photovoltaics based on the principle of bulk donor-acceptor heterojunction are tested using a blend of poly(2-methoxy-5-(2'-ethyl-hexyloxy)-1, 4-phenylene vinylene) (MEH-PPV) mixed with the C60-derivative (6, 6)-phenyl C61-butyric acid methyl ester (PCBM). First, different solution concentrations of the donor MEH-PPV material and of the blend are subjected to rheology measurements. Addition of the acceptor (PCBM) to a donor material based solution induces a decrease of the solution viscosity. However, the overall flow behaviour of the blend remains similar to that of the MEH-PPV based solution. Secondly, it is shown that specific printer settings have to be used to obtain active layers that are suitable for opto-electronic applications. Finally, devices with an overall energy conversion efficiency of 1.25% under standardized simulated solar illumination (AM1.5G; 100mW/cm2) have been obtained showing that screen-printing can be a suitable technique for the deposition of the active layer of polymer solar cells.