No CrossRef data available.
Published online by Cambridge University Press: 31 January 2011
Polycrystalline silicon (pc-Si) thin films have been synthesized by aluminium induced crystallization (AIC) of amorphous silicon (a-Si) at low temperatures (≤500°C) on flexible metallic substrates for the first time. Different diffusion barrier layers were used to prepare stress free pc-Si films as well as to evaluate the effective barrier against substrate impurity diffusion. The layers of aluminum (Al) and then amorphous silicon with the thickness of 0.27 μm and 0.37 μm were deposited on barrier coated metal sheets by means of an electron beam evaporation and PECVD, respectively. The bi-layers were annealed in a tube furnace at different temperatures (400-500°C) under nitrogen flow for different time periods (1-10hours). The degree of crystallinity of the as-grown layers was monitored by micro-Raman and reflectance spectroscopies. Structure, surface morphology and impurity analysis were carried out by X-ray diffraction, scanning electron microscopy (SEM) and EDAX, respectively. The X-ray diffraction measurements were used to determine the orientation of grains. The results show that the AIC films on metal sheets are polycrystalline and the grains oriented in (100) direction preferentially. However, the properties of AIC films are highly sensitive to the surface roughness.