Published online by Cambridge University Press: 28 February 2011
The photoluminescence and infrared absorbance of electrochemically anodized porous silicon samples were examined as a function of hydrofluoric acid (HF) etching time. Transmission FTIR spectroscopy measurements revealed that the infrared absorbance from silicon hydrogen surface species was largest for the initial porous silicon samples and immediately decreased with HF etching. In contrast, the photoluminescence did not appear until after HF etching times of 20–80 minutes, depending on initial sample porosity. Subsequently, the photoluminescence intensity increased, reached a maximum, and then progressively decreased versus HF etching time. These HF etching results demonstrate that there is no direct correlation between the photoluminescence and the silicon hydrogen surface species.