Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-04T04:40:28.834Z Has data issue: false hasContentIssue false

Positron 2D-Acar Experiments and Electron-Positron Momentum Density in YBa2Cu307−x

Published online by Cambridge University Press:  25 February 2011

L.C. Smedskjaer
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
A. Bansil
Affiliation:
Physics Department, Northeastern University, Boston, Massachusetts 02115
U. Welp
Affiliation:
Science and Technology Center for Superconductivity, Argonne National Laboratory, Argonne, IL 60439
Y. Fang
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
K.G. Bailey
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
Get access

Abstract

We discuss positron annihilation (2D-ACAR) measurements in the c-projection on an untwinned metallic single crystal of YBa2Cu3O7-x as a function of temperature, for five temperatures ranging from 30K to 300K. The measured 2D-ACAR intensities are interpreted in terms of the electron-positron momentum density obtained within the KKR-band theory framework. The temperature dependence of the 2D-ACAR spectra is used to extract a ‘background corrected’ experimental spectrum which is in remarkable accord with the corresponding band theory predictions, and displaysin particular clear signatures of the electron ridge Fermi surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Haghighi, H. et al. , Phys. Rev. Letters 67, 382(1991)., and J. Phys. and Chem. of Solids (1991)CrossRefGoogle Scholar
[2] Smedskjaer, L.C, et al. , J. Phys. and Chem. of Solids, (1991).Google Scholar
[3] Hoffmann, L., Sadowski, W., and Peter, M., Proc. of the 9'th “Int. Conf. on Positron Annihilation”. Hungary (1991); to appear as a special vol. of Mat. Sci. Forum (1992)Google Scholar
[4] Berko, S. in, Momentum Distributions, edited by Silver, R. N. and Sokol, P. E., (Plenum, New York, 1989), pp. 273.CrossRefGoogle Scholar
[5] Mijnarends, P. E., in Positron Solid State Physics. Course LXXXIII, Int. School of Phys. “Enrico Fermi”, edited by: Brandt, W. and Dupasquier, A., (North-Holland,1983), pp. 146 Google Scholar
[6] Bansil, A. et al. Phys. Rev. Lett. 61, 2480(1988).CrossRefGoogle Scholar
[7] Bansil, A., Mijnarends, P. E., and Smedskjaer, L. C., Physica C 172, 175 (1990).CrossRefGoogle Scholar
[8] Bansil, A., Mijnarends, P. E., and Smedskjaer, L. C., Phys. Rev. B 43, 3667(1991).CrossRefGoogle Scholar
[9] Massidda, S., Physica C 169, 137(1990); T. Jarlborg et al., J. Phys. Chem. Solids (1991).CrossRefGoogle Scholar
[10] Singh, D. et al. , Phys. Rev. B 42, 2696(1990).CrossRefGoogle Scholar
[11] Mijnarends, P.E. and Bansil, A., J. Phys.: Conden. Matter 2,911 (1990)Google Scholar
[12] Smedskjaer, L.C., and Legnini, D.G., Nucl. Inst. Meth. Phys. Res., A 292, 487,(1990)CrossRefGoogle Scholar
[13] Hoffmann, L. et al. J. Phys. and Chem. of Solids, (1991)Google Scholar
[14] Smedskjaer, L.C. et al. Physica B 150, 56 (1988)CrossRefGoogle Scholar
[15] Stetten, E.C. von et al. Phys. Rev. Lett. 60, 2198(1988).CrossRefGoogle Scholar
[16] Barbiellini, B., et al. Phys Rev B 43, 7810(1991).CrossRefGoogle Scholar
[17] Campuzano, J.C. et al. Phys. Rev. B 43, 2788 (1991)CrossRefGoogle Scholar
[18] Mueller, F.M. J. Phys. Chem. Solids (1991); G. Kido et al. J. Phys. Chem. Solids (1991)Google Scholar