Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T06:05:24.117Z Has data issue: false hasContentIssue false

Post Deposition Annealing Temperature Effect on White-light Emitting of Sputter Deposited Zr-doped HfO2 Thin Film

Published online by Cambridge University Press:  18 September 2014

Chi-Chou Lin
Affiliation:
Thin Film Nano & Microelectronics Research Laboratory, Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, U.S.A.
Yue Kuo
Affiliation:
Thin Film Nano & Microelectronics Research Laboratory, Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, U.S.A.
Get access

Abstract

The warm white light emission from the MOS capacitor containing the Zr-doped HfO2 high-k thin film on a p-type Si wafer under various post deposition annealing temperatures has been investigated. The light intensity is affected by the annealing temperature and the magnitude of the stress voltage. The annealing temperature changes the defect density and the physical thickness of the high-k stack. The high stress voltage induces the strong light emission because of the passage of a large current through the conductive path. The broad band emission spectrum covers the visible and near IR wavelength range with a large color rendering index. This new light emission device has a very long lifetime of > 1,000 hours at the atmosphere without a protection layer. The device is made of the IC compatible material and fabrication process, which favors the application over a wide range of products.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Schreuder, M. A., Xiao, K., Ivanov, I. N., Weiss, S. M., and Rosenthal, S. J., Nano Lett. 10, 573 (2010).CrossRefGoogle Scholar
Chen, H. S., Wang, S. J. J., Lo, C. J., and Chi, J. Y., Appl. Phys. Lett. 86, 131905 (2005).Google Scholar
Kuo, Y. and Lin, C. -C., Appl. Phys. Lett. 102, 031117 (2013).CrossRefGoogle Scholar
Kuo, Y. and Lin, C. -C., Electrochem. Solid-State Lett. 2, Q59 (2013).CrossRefGoogle Scholar
Kuo, Y. and Lin, C. -C., Solid-State Electron. 89, 120 Google Scholar
Lin, C. -C. and Kuo, Y., J. Vac. Sci. Technol. B 32, 011208 (2014).Google Scholar
Pétry, J., Vandervorst, W., Blasco, X., Microelectron. Eng.72, 174 (2004).Google Scholar
Moon, T. -H., Lee, J. -W., Ham, M. -H., and Myoung, J. -M., Microelectron. Eng. 83, 2452 (2006).CrossRefGoogle Scholar
Lin, C. -C. and Kuo, Y., J. Appl. Phys. 115, 084113 (2014).CrossRefGoogle Scholar
Macadam, D. L., J. Opt. Soc. Am. 27, 294 (1937).CrossRefGoogle Scholar
Sándor, N and Schanda, J., Lighting Res. Technol. 38, 225 (2006).CrossRefGoogle Scholar
Garcia, M. A., Ali, M. N., Parsons-Moss, T., Ashby, P. D., Nitsche, H., Thin Solid Films 516, 6261 (2008).Google Scholar
Santos, V., Zeni, M., Bergmann, C. P. and Hohemberger, J. M. Rev. Adv. Mater. Sci. 17, 62 (2008).Google Scholar
Lin, C. -H. and Kuo, Y., J. Appl. Phys. 110, 024101 (2011).CrossRefGoogle Scholar
Hegde, R. I., Triyoso, D. H., Tobin, P. J., Kalpat, S., Ramon, M. E., Tseng, H.-H. et al. ., Tech. Dig. - Int. Electron Devices Meet. 35, (2005).Google Scholar
Jeon, I. S., Park, J., Eom, D., Hwang, C. S., Kim, H. J., Park, C. J., Cho, H. Y., Lee, J. -H., Lee, N. -I., and Kang, H. -K., Jpn. J. Appl. Phys. 42, 1222 (2003).Google Scholar
Tang, W. M., Leung, C. H., Lai, P. T., Thin Solid Films 519, 505 (2010).CrossRefGoogle Scholar
Lin, C. -C. and Kuo, Y., ECS J. Solid State Sci. Technol. 3, Q182 (2014)CrossRefGoogle Scholar