Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T10:21:18.937Z Has data issue: false hasContentIssue false

Potential Energy Calculation of two Structures of the Σ=11 <011> Tilt Grain Boundary in Silicon and Germanium

Published online by Cambridge University Press:  10 February 2011

J. Chen
Affiliation:
LERMAT, UPRESA-CNRS 6004, ISMRA, 6 Bd du Maréchal Juin, 14050 CAEN Cedex, FranceHairie@ismra.unicaen.fr
A. Hairie
Affiliation:
LERMAT, UPRESA-CNRS 6004, ISMRA, 6 Bd du Maréchal Juin, 14050 CAEN Cedex, FranceHairie@ismra.unicaen.fr
B. Lebouvffir
Affiliation:
LERMAT, UPRESA-CNRS 6004, ISMRA, 6 Bd du Maréchal Juin, 14050 CAEN Cedex, FranceHairie@ismra.unicaen.fr
G. Nouet
Affiliation:
LERMAT, UPRESA-CNRS 6004, ISMRA, 6 Bd du Maréchal Juin, 14050 CAEN Cedex, FranceHairie@ismra.unicaen.fr
E. Paumter
Affiliation:
LERMAT, UPRESA-CNRS 6004, ISMRA, 6 Bd du Maréchal Juin, 14050 CAEN Cedex, FranceHairie@ismra.unicaen.fr
Get access

Abstract

Available experimental data concerning two possible atomic structures (A and B) of the Σ=11 <011> tilt grain boundary in silicon and germanium are analyzed. Previous empirical calculations concerning low and high temperature stability of these structures are summarized and criticized. New calculations using the semi-empirical tight-binding method (SETBM) are presented for low temperature stability. The tight-binding parameters of Mercer and Chou give results in agreement with experimental observations by high resolution electron microscopy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Putaux, J.L., Thesis, Grenoble, 1991.Google Scholar
2. Thibault, J., Putaux, J.L., Jacques, A., George, A. and Elkajbaji, M., Microsc. Microanal. Microstruct., 1, 395(1990).Google Scholar
3. Bourret, A. and Bacmann, J.J., Rev. Phys. Appl., 22, 563(1987).Google Scholar
4. Elkajbaji, M., Thibault, J., and Kirchner, O.K., Phil. Mag. Lett., 73, 5(1996).Google Scholar
5. Mourelatos, S., Ralantoson, N., Delavignette, P., Hairie, A., Hairie, F., Paumier, E., Sutton, A. and Thibault, J.., Mat. Sc. Forum, 126/128, 253(1993).Google Scholar
6. Hairie, A., Hairie, F., Lebouvier, B., Nouet, G., Paumier, E., Ralantoson, N. and Sutton, A., Interface Science, 2, 17(1994).Google Scholar
7. Hou, M., Haine, A., Lebouvier, B., Paumier, E., Ralantoson, N, Hardouin-Duparc, O. and Sutton, A.P., Mat. Se. Forum, 207/209, 249(1996).Google Scholar
8. Lebouvier, B., Hairie, A., Hairie, F., Nouet, G. and Paumier, E., Mat. Se. Forum, 207/209, 277(1996).Google Scholar
9. Sutton, A.P., Finnis, M.W., Pettifor, D.G. and Ohta, Y., J. Phys. C, 21, 35(1988).Google Scholar
10. Balamane, H., Halicioglu, T. and Tiller, W.A., Phys. Rev. B, 46, 2250, (1992).Google Scholar
11. Wilder, H.J. and Teichler, H., Phil. Mag. Lett., 76, 83(1997).Google Scholar
12. Weber, W., Phys. Rev. B, 15, 4789(1977).Google Scholar
13. Harrison, W.A., Electronic Structure and the Properties of Solids, ed.(W.H. Freeman and Company, 1980)Google Scholar
14. Li, X.P., Nunes, R.W. and Vanderbilt, D., Phys. Rev. B, 47, 10891(1993).Google Scholar
15. Haydock, R., Solid State Physics, ed. (Seitz, F. and Turnbull, D.), 35, 215(1980).Google Scholar
16. Chen, J., Béré, A., Hairie, A., Nouet, G. and Paumier, E., Computational Materials Science, 501, 15, (1997).Google Scholar
17. Mercer, J.L. Jr and Chou, M.Y., Phys. Rev. B 47, 9366(1993).Google Scholar