Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T14:02:55.402Z Has data issue: false hasContentIssue false

Precipitates of Cr at Σ3 <110> {112} GB in α-Fe

Published online by Cambridge University Press:  27 February 2014

Y.Y. Dai
Affiliation:
School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China
L. Ao
Affiliation:
School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China
Q.Q. Sun
Affiliation:
School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China School of Science, Huaihai Institute of Technology, Lianyungang 222005, China Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
L. Yang
Affiliation:
School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China
J.L. Nie
Affiliation:
School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China
S.M. Peng
Affiliation:
Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
X.G. Long
Affiliation:
Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
X.S. Zhou
Affiliation:
Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
X.T. Zu
Affiliation:
School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China
L. Liu
Affiliation:
Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
X. Sun
Affiliation:
Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA
F. Gao
Affiliation:
Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA
Get access

Abstract

Precipitates of Cr at Σ3 <110> {112} GB in α-Fe have been studied using molecular dynamics with a two-band embedded atomic model potential. The accumulation and segregation of Cr atoms and the evolution of the GB depend on local Cr concentration and temperature. At the early stage, with the existence of vacancies, the strong attraction of Cr with the GB core provides a pathway for Cr atoms to quickly accumulate within the GB core. With the increase of Cr concentration, the size of Cr dilute precipitates increases dramatically. And the strong segregation of Cr at the GB is observed, when Cr concentration reach 20%. Also, the size of Cr precipitates increases with increasing the temperatures from 300 K to 1000 K. The accumulation and segregation of Cr atoms at the GB lead to significant deformation of the GB structure and the formation of GB steps, causing the displacement and broadening of the GB.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

Mansur, L.K., Rowcliffe, A.F., Nanstad, R.K., Zinkle, S.J., Corwin, W.R. and Stoller, R.E., J. Nucl. Mater. 166, 329333 (2004).Google Scholar
Klueh, R.L. and Nelson, A.T., J. Nucl. Mater. 371, 37 (2007).CrossRefGoogle Scholar
Abderrahim, H.A., Kupschus, P., Malambu, E., Benoit, P., Van Tichelen, K., and Arien, B., Nucl. Instrum. Methods Phys. Res., Sec. A 463, 487 (2001).CrossRefGoogle Scholar
Klueh, R.L. and Harries, D.R., in: ASTM MONO3, West Conshohocken, PA, 2001.Google Scholar
Grobner, P.J., Metall. Trans. 4, 251 (1973).CrossRefGoogle Scholar
Dubuisson, P., Gilbon, D. and Seran, J.L., J. Nucl. Mater. 205, 178 (1993).CrossRefGoogle Scholar
Terentyev, D., Hafez Haghighat, S. M., and Schäublin, R., J. Appl. Phys. 107, 061806 (2010).CrossRefGoogle Scholar
Hu, Rong, Smith, George D.W. and Marquis, Emmanuelle A., Acta Mater. 61, 34903498 (2013).CrossRefGoogle Scholar
Kuksenko, V., Pareige, C. and Pareige, P., J. Nucl. Mater. 425, 125129 (2012).CrossRefGoogle Scholar
Kuksenko, V., Pareige, C., Genevois, C., Pareige, P., J. Nucl. Mater. 434, 4955 (2013).CrossRefGoogle Scholar
Praud, M., Mompiou, F., Malaplate, J., Caillard, D., Garnier, J., Steckmeyer, A. and Fournier, B., J. Nucl. Mater. 428, 9097 (2012).CrossRefGoogle Scholar
Choudhury, S., Barnard, L., Tucker, J.D., Allen, T.R., Wirth, B.D. and Asta, M., J. Nucl. Mater. 411, 114 (2011).CrossRefGoogle Scholar
Tschopp, M.A., Solanki, K.N., Gao, F., Sun, X., Khaleel, M. A. and Horstemeyer, M. F., Phys. Rev. B. 85, 064108 (2012).CrossRefGoogle Scholar
Terentyev, D. and He, X., Comput. Mater. Sci. 50, 925933 (2011).CrossRefGoogle Scholar
Terentyev, D., He, X., Serra, A. and Kuriplach, J., Comput. Mater. Sci. 49, 419429 (2010).CrossRefGoogle Scholar
Terentyev, D., He, X., Zhurkin, E. and Bakaev, A., J. Nucl. Mater. 408, 161170 (2011).CrossRefGoogle Scholar
Zhurkin, E.E., Hou, M., Kuriplach, J., Ossowski, T. and Kiejna, A., Nucl. Instrum. Methods Phys. Res., Sec. B 269, 16791683 (2011).CrossRefGoogle Scholar
Gao, F., Bacon, D.J., Howe, L.M., So, C.B., J. Nucl. Mater. 294, 288 (2001).CrossRefGoogle Scholar
Ackland, G., Mendelev, M., Srolovitz, D., Han, S., and Barashev, V., J. Phys.: Condens. Matter 16, S2629 (2004).Google Scholar
Olsson, P., Wallenius, J., Domain, C., Nordlund, K. and Malerba, L., Phys. Rev. B 72, 214119 (2005).CrossRefGoogle Scholar