Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T06:02:38.410Z Has data issue: false hasContentIssue false

Pre-Cracking and Plasma Enhanced Metalorganic Chemical Vapor Deposition Processes for Epitaxial Hg1−xCdxTe and HgTe-CdTe Superlattice Growth

Published online by Cambridge University Press:  26 February 2011

P.-Y. Lu
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
L. M. Williams
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
C.-H. Wang
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
S. N. G. Chu
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
M. H. Ross
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

Two low temperature metalorganic chemical vapor deposition growth techniques, the pre-cracking method and the plasma enhanced method, will be discussed. The pre-cracking technique enables one to grow high quality epitaxial Hg1−xCdxTe on CdTe or CdZnTe substrates at temperatures around 200–250°C. HgTe-CdTe superlattices with sharp interfaces have also been fabricated. Furthermore, for the first time, we have demonstrated that ternary Hg1−xCdTe compounds and HgTe-CdTe superlattices can be successfully grown by the plasma enhanced process at temperatures as low as 135 to 150°C. Material properties such as surface morphology, infrared transmission, Hall mobility, and interface sharpness will be presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hoke, W. E. and Lemonias, P. J., Appl. Phys. Lett. 46, 398 (1985).Google Scholar
2.Irvine, S. J. C., Mullin, J. B., and Tunnicliffe, J., J. Crystal Growth 68, 188 (1984).Google Scholar
3.Hoke, W. E. and Lemonias, P. J., Appl. Phys. Lett. 48, 1689 (1986).Google Scholar
4.Ahlgren, W. L., James, J. B., Ruth, R. P., Patten, E. A., and Staudenmann, J. L., Mat. Res. Soc. Symp. Proc. 90, 405 (1986).Google Scholar
5.Wang, C.-H., Lu, P.-Y., & Williams, L.M., Appl. Phys. Lett. 48, 1085, (1986).Google Scholar
6.Lu, P.-Y., Wang, C.-H., Williams, L.M., Chu, S.N.G., & Stiles, C.M., Appl. Phys. Lett. 49, 1372, (1986).Google Scholar
7.Lu, P.-Y., Williams, L. M., Wang, C.-H., & Chu, S. N. G., J. Vac. Sci. Technol. A5, 3153, (1987).Google Scholar
8.Williams, L. M., Lu, P.-Y., Wang, C.-H., & Chu, S. N. G., Appl. Phys. Lett. to be published on Nov. 23, 1987.Google Scholar
9.Scott, M. W., J. Appl. Phys. 43, 1055 (1972).Google Scholar
10.Leopold, D. J., Wroge, M. L., and Broerman, J. G., Appl. Phys. Lett. 50, 924 (1987).Google Scholar