Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T08:37:59.756Z Has data issue: false hasContentIssue false

Prediction of hot flow curves of construction steels by physically-based constitutive equations

Published online by Cambridge University Press:  28 February 2013

G. Varela-Castro
Affiliation:
Fundació CTM Centre Tecnològic, Av. de les Bases de Manresa 1, 08242-Manresa, Spain.
J.M. Cabrera*
Affiliation:
Fundació CTM Centre Tecnològic, Av. de les Bases de Manresa 1, 08242-Manresa, Spain. Departament de Ciència del Materials i Enginyeria Metal·lúrgica, ETSEIB, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028-Barcelona, Spain.
Get access

Abstract

The development of accurate constitutive equations is important for the success of computer simulations of high temperature forming operations. Often, these simulations must be made on alloys that have not been completely characterized. For that reason physically-based constitutive equations taking the chemical composition into consideration, involving deformation mechanisms and characteristic properties of the material are necessary. The influence that exerts the solute elements to an alloy on the mechanisms of diffusion on deformation processes at high temperatures is not an easy subject and the available information in literature is scarce.

This study examines that influence working on the basis of eight structural plain carbon steels with the chemical composition ranging between 0.15-0.45%C, 0.2-0.4%Si and 0.6-1.6%Mn produced by Electro-Slag Remelting ESR process and tested by isothermal uniaxial compression technique. The studied deformation conditions include strain rates ranging between 5·10−4 to 1·10−1 s−1 and temperatures between 0.6-0.75Tm, with Tm the melting temperature.

A constitutive expression for the hot working behavior is proposed, it includes the variation of the diffusion parameters with the chemical composition. To such aim the effect of the chemical composition of the alloy on the pre-exponential factor D0 of the gamma iron self-diffusion coefficient Dsd is included. Finally, a comparison of the experimental and predicted results shows the good agreement of the model with experimental flow data.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kattner, U.R. and Campbell, C.E., Mater. Sci. Technol. 25(4) (2009), 443.CrossRefGoogle Scholar
Bakker, H. et al. . in “Diffusion in Solid Metals and Alloys” 1st Ed. vol. 26 Springer, (1990).Google Scholar
Gale, W.F. and Totemeier, T.C., in “Smithell Metals Reference Book”, 8th Ed Butterworth-Heinemann, (2004).Google Scholar
Lee, S-J., Matlock, D.K. and van Tyne, C.J., ISIJ International 51(11) (2011), 1903.CrossRefGoogle Scholar
Ochsner, A., Gegner, J. and Mishuris, G., Met. Sci. Heat Treat. 46(3-4) (2004), 178.CrossRefGoogle Scholar
Ågren, J., J. Phys. Chem. Solids 43(4) (1982), 385.CrossRefGoogle Scholar
Ågren, J., J. Phys. Chem. Solids 43(5) (1982), 421.CrossRefGoogle Scholar
Andersson, J.O. and Ågren, J., J. Appl. Phys. 72(4) (1992), 1350.CrossRefGoogle Scholar
Frost, H.J. and Ashby, M.F., in “Deformation-Mechanism Maps” 1st Ed. Pergamon Press, (1982).Google Scholar
Sakai, T. and Jonas, J.J., Acta Metall. 32(2) (1984), 189.CrossRefGoogle Scholar
Bergström, Y., Mat. Sci. Eng. 5(4) (1969), 193.CrossRefGoogle Scholar
Bergström, Y. and Aronsson, B., Metall. Trans. 3(7) (1972), 1951.CrossRefGoogle Scholar
Kocks, U.F., J. Eng. Mat. Tech. 98(1) (1976), 76.CrossRefGoogle Scholar
Estrin, Y. and Mecking, H., Acta Metall. 32(1) (1984), 57.CrossRefGoogle Scholar
Kolmogorov, A.N., Izvestija Akademii Nauk SSSR. Serija Matematiceskaja 1 (1937), 355.Google Scholar
Johnson, W.A. and Mehl, R.F., Trans. Am. Inst. Min. Metall. Eng. AIME 135 (1939), 416.Google Scholar
Avrami, M., J. Chem. Phys. 7(12) (1939), 1103.CrossRefGoogle Scholar
Avrami, M., J. Chem. Phys. 8(2) (1940), 212.CrossRefGoogle Scholar
Cabrera, J.M., Al Omar, A., Jonas, J.J. and Prado, J.M., Metall. Trans. A 28A (1997), 2233.CrossRefGoogle Scholar
Cahn, R.W. and Haasen, P., in “Physical Metallurgy”, vol. I, II & III 4th ed., North Holland, (1996).Google Scholar
Zener, C., J. Appl. Phys. 22(4) (1951), 372.CrossRefGoogle Scholar
Mead, H.W. and Birchenall, C.E., Trans. Am. Inst. Min. Metall. Eng. AIME 206(10) (1956), 1336.Google Scholar
Treheux, D., Vincent, L. and Guiraldenq, P., Acta Metall. 29(5) (1981), 931.CrossRefGoogle Scholar
Buffington, F.S., Hirano, K. and Cohen, M., Acta Metall. 9(5) (1961), 434.CrossRefGoogle Scholar
Lidiard, A.B., Philos. Mag. 5(59) (1960), 1171.CrossRefGoogle Scholar
Irmer, V. and Feller-Kniepmeier, M., Philos. Mag. 25(6) (1972), 1345.CrossRefGoogle Scholar
Darken, L.S., Trans. Am. Inst. Min. Metall. Eng. AIME 180 (1949), 430.Google Scholar
Dyson, D.J. and Holmes, B., J. Iron Steel Inst. 208(5) (1970), 469.Google Scholar
Cheng, L., Böttger, A., de Keijser, T.H. and Mittemeijer, E.J., Scripta Mater. 24(3) (1990), 509.CrossRefGoogle Scholar
Onink, M. et al. ., Scripta Mater. 29(8) (1993), 1011.CrossRefGoogle Scholar
Goetz, R.L. and Semiatin, S.L., J. Mater. Eng. Perform. 10(6) (2001), 710.CrossRefGoogle Scholar
Phaniraj, M.P. and Lahiri, A.K., J. Mater. Process Technol. 141(2) (2003), 219.CrossRefGoogle Scholar
Srinivasulu, S. and Jain, A., Appl. Soft Comput. 6(3) (2006), 295.CrossRefGoogle Scholar
Mandal, S., Rakesh, V., Sivaprasad, P.V., Venugopal, S. and Kasiviswanathan, K.V., Mat. Sci. Eng. A 500(1-2) (2009), 114.CrossRefGoogle Scholar