Published online by Cambridge University Press: 15 February 2011
Effects of alpha radiolysis of water on the corrosion of nuclear fuel (UO2) have been investigated in solutions at pH = 9.5, i.e., a value close to that expected in groundwaters at the depth of the disposal vault proposed in the Canadian nuclear fuel waste management program, CNFWMP. The corrosion potentials of UO2 electrodes exposed to the products of alpha radiolysis of water were monitored as a function of alpha flux and exposure time in a specially designed thin-layer cell. The oxidative dissolution rates of UO2 are calculated from the steady-state values of the corrosion potential using an electrochemical model. A procedure to predict the dissolution rate of used nuclear fuel in groundwater as a function of fuel cooling time is described, and illustrated by calculating the dissolution rates for the reference used fuel in the CNFWMP (Bruce CANDU reactor fuel, burnup 685 GJ/kg U). It is shown that the oxidative dissolution of used fuel in the CNFWMP will be important only for time periods ≤ 600 a at this burnup and assuming no decrease in pH.