Published online by Cambridge University Press: 08 October 2013
A SiC-based ceramic foam applied in solar thermal processes was characterized in detail in terms of its textural parameters and its radiative properties. Scanning electron microscopy and x-ray µ-tomography were first performed to investigate the 3D texture of the sample at several length scales. Infrared reflectance microscopy was also applied to probe the local optical responses on the struts constituting the foam. Based on the whole set of experimental data, a numerical tool (C++) was implemented to reconstruct virtual SiC foams. A Monte Carlo Ray Tracing code (iMorphRad, C++) was then used to compute the normal spectral emittance for the real SiC foam and for another reconstructed SiC foam with similar textural features. The two numerically determined emittances were then compared with previous infrared spectroscopy experimental measurements. This numerical procedure enables us to propose a methodology for the design of SiC foams with prescribed radiative properties.