Published online by Cambridge University Press: 18 May 2012
Pb(Zr0.53Ti0.47)O3 (PZT) films have been fabricated on stainless steel substrates by a Polyvinylpirrolidone (PVP) modified sol-gel route. The single layer of about 0.26 μm was achieved by using the PVP-modified PZT sol, and Crack-free PZT films with thickness of up to 2.37 μm were fabricated by repeating the deposition process. The variations in crystallite orientation, microstructure, dielectric and ferroelectric properties of PZT films were investigated as a function of film thickness. Our results indicate that PZT films prepared on stainless steel substrates maintain good dielectric and ferroelectric properties.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.