Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T19:09:23.315Z Has data issue: false hasContentIssue false

Preparation, ignition, and combustion of mechanically alloyed Al-Mg powders with customized particle sizes

Published online by Cambridge University Press:  11 February 2013

Yasmine Aly
Affiliation:
Otto H. York Department of Chemical, Biological, and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, U.S.A.
Vern K. Hoffman
Affiliation:
Otto H. York Department of Chemical, Biological, and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, U.S.A.
Mirko Schoenitz
Affiliation:
Otto H. York Department of Chemical, Biological, and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, U.S.A.
Edward L. Dreizin
Affiliation:
Otto H. York Department of Chemical, Biological, and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, U.S.A.
Get access

Abstract

Adding aluminum to propellants, pyrotechnics, and explosives is a common way to boost their energy density. A number of approaches have been investigated that shorten aluminum ignition delay, increase combustion rate, and decrease the tendency of aluminum droplets to agglomerate. Previous work showed that particles of mechanically alloyed Al-Mg powders burn faster than similarly sized particles of pure aluminum. However, preparation of mechanically alloyed powders with particle sizes matching those of fine aluminum used in energetic formulations was not achieved. This work is focused on preparation of mechanically alloyed, composite Al-Mg powders in which both internal structures and particle size distributions are adjusted. Binary powders with compositions in the range of 50 - 90 at. % Al were prepared and characterized. Milling protocol is optimized to prepare equiaxial, micron-scale particles suitable for laboratory evaluations of their oxidation, ignition, and combustion characteristics. Quantitative particle size analyses are done using low-angle laser light scattering. Electron microscopy and x-ray diffraction are used to examine particle morphology and phase makeup, respectively. Combustion of aerosolized powder clouds is studied using a constant volume explosion setup. For all materials, ignition and combustion characteristics are compared to each other and to those of pure Al. Compositions with improved performance (i.e., shorter ignition delay and faster pressurization rate) compared to pure Al are identified.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Gany, A., Netzer, D.W., Int. J. Turbo Jet Engines 2 (1985) 157168.10.1515/TJJ.1985.2.2.157CrossRefGoogle Scholar
Palaszewski, B., Propul, J.. Power 8 (1992) 11921199.Google Scholar
Palaszewski, B., Powell, R., Propul, J.. Power 10 (1994) 828833.Google Scholar
Sambamurthi, J.K., Price, E.W., Sigman, R.K., AIAA J. 22 (1984) 11321138.10.2514/3.48552CrossRefGoogle Scholar
Meda, L., Marra, G., Galfetti, L., Severini, F., De Luca, L., Mater. Sci. Eng. C 27 (2007) 13931396.10.1016/j.msec.2006.09.030CrossRefGoogle Scholar
De Luca, L., Galfetti, L., Severini, F., Meda, L., Marra, G., Vorozhtsov, A.B., Sedoi, V.S., Babuk, V.A., Combust. Explosion Shock Waves 41 (2005) 680692.CrossRefGoogle Scholar
Pivkina, A., Ulyanova, P., Frolov, Y., Zavyalov, S., Schoonman, J., Propellants Explos. Pyrotech. 29 (2004) 3949.10.1002/prep.200400025CrossRefGoogle Scholar
Brousseau, P., Anderson, C.J., Propellants Explos. Pyrotech. 27 (2002) 300306.10.1002/1521-4087(200211)27:5<300::AID-PREP300>3.0.CO;2-#3.0.CO;2-#>CrossRef3.0.CO;2-#>Google Scholar
Beloni, E., Hoffmann, V.K., Dreizin, E.L., Propul, J.. Power 24 (2008) 14031411.Google Scholar
Schoenitz, M., Ward, T.S., Dreizin, E.L., Proc. of the Combust. Inst. (2005) 20712078.10.1016/j.proci.2004.08.134CrossRefGoogle Scholar
Shoshin, Y.L., Dreizin, E.L., Combust. Flame 145 (2006) 714722.10.1016/j.combustflame.2005.11.006CrossRefGoogle Scholar
Shoshin, Y.L., Mudryy, R.S., Dreizin, E.L., Combust. Flame 128 (2002) 259269 .10.1016/S0010-2180(01)00351-0CrossRefGoogle Scholar
Stamatis, D., Jiang, Z., Hoffmann, V.K., Schoenitz, M., Dreizin, E.L., Combust. Sci. Technol. 181 (2009) 97116.10.1080/00102200802363294CrossRefGoogle Scholar
Zhu, X., Schoenitz, M., Dreizin, E.L., J. Alloys Compd. 432 (2007) 111115.10.1016/j.jallcom.2006.05.114CrossRefGoogle Scholar
Suryanarayana, C., Prog. Mater. Sci. 46 (2001) 1184.10.1016/S0079-6425(99)00010-9CrossRefGoogle Scholar
Schoenitz, M., Dreizin, E.L., J. Mater. Res. 18 (2003) 18271836.10.1557/JMR.2003.0255CrossRefGoogle Scholar
Aly, Y., Schoenitz, M., Dreizin, E.L., Combust. Flame, in press (2013).Google Scholar
Eapen, B.Z., Hoffmann, V.K., Schoenitz, M., Dreizin, E.L., Combust. Sci. Technol. 176 (2004) 10551069.10.1080/00102200490426433CrossRefGoogle Scholar
Santhanam, P.R., Hoffmann, V.K., Trunov, M.A., Dreizin, E.L., Combust. Sci. Technol. 182 (2010) 904921.10.1080/00102200903418278CrossRefGoogle Scholar
Schoenitz, M., Dreizin, E.L., Shtessel, E., Propul, J.. Power 19 (2003) 405412.Google Scholar
Glassman, I., Combustion, Academic Press, San Diego, CA, 1996.Google Scholar
Grinshpun, S.A., Adhikari, A., Yermakov, M., Reponen, T., Dreizin, E.L., Schoenitz, M., Hoffmann, V.K., Zhang, S., Environ. Sci. Technol. 46 (2012) 73347341.10.1021/es300537fCrossRefGoogle Scholar
Zhang, S., Schoenitz, M., Dreizin, E.L., J. Phys. Chem. C 114 (2010) 1965319659.10.1021/jp108171kCrossRefGoogle Scholar
Farley, C., Pantoya, M.L., Therm, J.. Anal. Calorim. 102 (2010) 609613.10.1007/s10973-010-0915-5CrossRefGoogle Scholar
Clark, B.R., Pantoya, M.L., Phys. Chem. Chem. Phys. 12 (2010) 1265312657.10.1039/c0cp00473aCrossRefGoogle Scholar
Dreizin, E.L., Shoshin, Y.L., Mudryy, R.S., Hoffmann, V.K., Combust. Flame 130 (2002) 381385.10.1016/S0010-2180(02)00380-2CrossRefGoogle Scholar