Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T00:58:12.642Z Has data issue: false hasContentIssue false

Preparation of Smooth Zinc Oxide Thin Film via Liquid Phase Reaction with Cation Additives

Published online by Cambridge University Press:  15 March 2011

Takeyasu Saito
Affiliation:
Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Japan
Yoshihisa Hirata
Affiliation:
Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Japan
Naoki Okamoto
Affiliation:
Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Japan
Kazuo Kondo
Affiliation:
Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Japan
Get access

Abstract

ZnO thin films were deposited in a solution with Zn(NO3)2 and DMAB from 60 to 80°C. The effects of cation additives such as Mg, Ga and Al in a aqueous solution were investigated on surface morphology, crystallographic structure and growth rate. By adding 1E−4 mol/l of Ga or Al, the growth rate was enhanced from 0.13 m/h to 0.35-0.38 m/h. In addition, the surface morphology became flat in the case of Al addition.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gupta, T.K., J. Am. Ceram. Soc. 73, pp.18171840 (1990).Google Scholar
2. Weibenrieder, K.S. and Muller, J., Thin Solid Films 300, pp.3041 (1997).Google Scholar
3. Gorla, C.R., Emanetoglu, N.W., Liang, S., Mayo, W.E., Lu, Y., Wraback, M. and Shen, H., J. Appl. Phys. 85, pp.25952602 (1999).Google Scholar
4. Koch, M.H., Timbrell, P.Y. and Lamb, R.N., Semiconduct. Sci. Technol. 10, pp.15231527 (1995).Google Scholar
5. Look, D.C., Reynolds, D.C., Litton, C.W., Jones, R.L., Easton, D.B. and Cantwell, G., Appl. Phys. Lett. 81, pp.18301832 (2002).Google Scholar
6. Hass, G., Heaney, J. and Toft, A.R., Appl. Opt. 18, pp.14881489 (1975).Google Scholar
7. Houng, B. and Huang, C.J., Surf. Coat. Technol. 201, pp.31883192 (2006).Google Scholar
8. Oh, B.Y., Jeong, M.C., Ham, M.H. and Myoung, J.M., Semicond. Sci. Tech. 22, pp.608612 (2007).Google Scholar
9. Jeong, S., Jeong, Y. and Moon, J., J. Phys. Chem. C 112, pp.1108211085 (2008).Google Scholar
10 Wang, C.X., Yang, G.W., Zhang, T.C., Liu, H.W., Han, Y.H., Luo, J.F., Gao, C.X. and Zou, G.T., Diamond Relat. Mater. 12, pp.15481552 (2003).Google Scholar
11. Chen, L. and Bi, X., Vacuum 82, pp.12161219 (2008).Google Scholar
12. Furuta, M., Hiramatsu, T., Matsuda, T., Li, C., Furuta, H. and Hirao, T., J. Non-Crystalline Solids 354, pp.19261931 (2008).Google Scholar
13. Oh, M.S., Hwang, D.K., Seong, D.J., Hwang, H.S., Park, S.J. and Kim, E.D., J. Electrochem. Soc. 155, pp.D599–D603 (2008).Google Scholar
14. Chao, L.C., Hu, H.T., Yang, S.H. and Fan, Y.C., Thin Solid Films 516, pp.63056309 (2008).Google Scholar
15. El-Yadouni, A., Boudrioua, A., Loulergue, J.C., Sallet, V. and Triboulet, T., Optical Materials 27, pp.13911395 (2005).Google Scholar
16. Sukur, E., Nishiyama, S. and Hattori, T., J. Ceram. Soc. of Japan 109, pp.13 (2001).Google Scholar
17. Santos, A.M.P. and Santos, E.J.P., Thin Solid Films 516, pp.62106214 (2008).Google Scholar
18. Wienke, J. and Booij, A.S., Thin Solid Films 516, pp.45084512 (2008).Google Scholar
19. Greene, L.E., Law, M., Goldberger, J., Kim, F., Johnson, J.C., Zhang, Y., Saykally, R.J. and Yang, P., Angew. Chem. Int. Ed. 42, pp.30313034 (2003).Google Scholar
20. Liu, B. and Zeng, H.C., J. Am. Chem. Soc. 125, pp.44304431 (2003).Google Scholar
21. Zhang, H., Yang, D., Li, D., Ma, X., Li, S. and Que, D., Cryst. Growth Des. 5, pp.547550 (2005)Google Scholar
22. Zhang, T., Dong, W., M. Keeter-Brewer, Konar, S., Njabon, R.N. and Tian, Z. Ryan, J. Am. Chem. Soc. 128, pp.1096010968 (2006).Google Scholar
23. Sahoo, T., Ju, J.-W., Kannan, V., Kim, J.S., Yu, Y.-T., Han, M.-S., Park, Y.-S. and Lee, I.-H., Mater. Res. Bull. 43, pp.502509 (2008).Google Scholar
24. Izaki, M. and Omi, T., J. Electrochem. Soc. 143, pp.L53–L55 (1996).Google Scholar
25. Izaki, M. and Omi, T., J. Electrochem. Soc. 144 pp.L3–L5 (1997).Google Scholar
26. Izaki, M. and Omi, T., J. Electrochem. Soc. 144, pp.19491952 (1997).Google Scholar
27. Cheng, H.C., Chen, C.F. and Tsay, C.Y., Jpn. J. Appl. Phys. 46, p.42654267 (2007).Google Scholar
28. Masuda, Y. and Kato, K., Crystal Growth and Design 8, pp.275279 (2008).Google Scholar
29. Saito, N., Haneda, H. and Koumoto, K., J. Ceram. Soc. of Japan 115, pp.850855 (2007).Google Scholar
30. Saito, Y., Shiga, T., Kokubun, A., Kawai, T. and Unuma, H., J. Ceram. Soc. of Japan 115, pp.938940 (2007).Google Scholar
31. Meerakker, J. E. A. M., J. Appl. Electrochem. 11, pp.395400 (1981).Google Scholar