Published online by Cambridge University Press: 15 February 2011
Continuous titania fibers were prepared by a polytitanoxane precursor method. Polytitanoxane was synthesized through hydrolysis and polymerization reaction between partially chelated titanium isopropoxide and water without acid catalyst. Polytitanoxane, which was precipitated from an isopropanol solution by adding adequate amount of water to titanium isopropoxide, was then dried and dissolved in tetrahydrofuran. The concentrated viscous solution of polytitanoxane was considerably stable to further self-condensation and had good spinnability. The precursor fiber which was obtained by spinning the solution was calcined to form titania fibers.
Two types of titania fibers were obtained under different calcination conditions from the same precursor fiber; Dense fiber with high tensile strength of higher than 1 GPa, and porous fiber with high surface area of more than 10 m2/g.
Photocatalytic activity of those fibers was studied using the phenol mineralization reaction in water. The phenol degradation ability of high-surface-area titania fiber was almost the same as that of commercial titania powder for photocatalyst.