No CrossRef data available.
Published online by Cambridge University Press: 15 July 2011
We investigated the pressure dependence of the inductive coupled plasma (ICP) oxidation on the electrical characteristics of the thin oxide films. Activation energies and electron temperatures with different pressures were estimated. To demonstrate the pressure effect on the plasma oxide quality, simple N type metal-oxide-semiconductor (NMOS) transistors were fabricated and investigated in a few electrical properties. At higher pressure than 200mTorr, plasma oxide has a slightly higher on-current and a lower interfacial trap density. The on-current gain seems to be related to the field mobility increase and the lower defective interface to the electron temperature during oxidation.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.