Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-04T04:42:45.419Z Has data issue: false hasContentIssue false

Pressure-Induced Distortive Phase Transition in Chromite-Spinel at 29 GPa

Published online by Cambridge University Press:  26 February 2011

Jinfu Shu
Affiliation:
shu@gl.ciw.edu, Carnegie Institution of Washington, Geophysical Laboratory, 5251 Broad Branch Road, NW, Washington, DC, 20015, United States
Wendy L. Mao
Affiliation:
wmao@lanl.gov, Los Alamos National Laboratory, LANSCE, Los Almos, NM, 87545, United States
Russell J Hemley
Affiliation:
hemley@gl.ciw.edu, Carnegie Institution of Washington, Geophysical Laboratory, 5251 Broad Branch Road, NW, Washington, DC, 20015, United States
Hokwang Mao
Affiliation:
mao@gl.ciw.edu, Carnegie Institution of Washington, Geophysical Laboratory, 5251 Broad Branch Road, NW, Washington, DC, 20015, United States
Get access

Abstract

A natural chromite single crystal was compressed in a helium pressure medium to just above 35 GPa at ambient temperature and studied with energy-dispersive x-ray diffraction. The volume compression of the cubic, spinel-type structure was fit to a third-order Birch-Murnaghan equation of state with parameters a0 = 8.338(4) Å, V0 = 579.6(9) Å3, K0 =179(10) GPa, and K' = 3.9(9) up to 29 GPa. A distortive phase transition was discovered at higher pressures to a CaAl2O4-type orthorhombic structure, with two cubic unit-cell axes increasing and the third decreasing with increasing pressure. The transition can be fit to a Landau-type strain-order formulism with approximately 5% volume decrease from the cubic phase at 35 GPa. The transition may be triggered by electronic or magnetic transitions in the 3d elements Fe and Cr cations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Mao, H. K. and Bell, P. M., Carnegie Inst. Washington Yearb. 70, 176 (1971).Google Scholar
2 Bassett, W. A. and Ming, L. C., Phys. Earth Planet. Interiors 6, 154 (1972).Google Scholar
3 Mao, H. K., Takahashi, T., Bassett, W. A., et al., J. Geophys. Res. 79, 1165 (1974).Google Scholar
4 Liu, L. G., Nature 262, 770 (1976).Google Scholar
5 Irifune, T., Nishiyama, N., Kuroda, K., et al., Science 279, 1698 (1998).Google Scholar
6 Shim, S., Duffy, T. S., and Takemura, K., Earth Planet. Sci. Lett. 203, 729 (2002).Google Scholar
7 Chen, M., Shu, J., Xie, X., et al., Geochim. Cosmochim. Acta 67, 3937 (2003).Google Scholar
8 Chen, M., Shu, J., Mao, H. K., et al., Proc. Nat. Acad. Sci. 100, 14651 (2003).Google Scholar
9 Rozenberg, G. K., Pasternak, M. P., Xu, W., et al., Phys. Rev. Lett. 96, 5705 (2006).Google Scholar
10 Badro, J., Fiquet, G., Guyot, F., et al., Science 300, 789 (2003).Google Scholar
11 Lin, J.-F., Struzhkin, V. V., Jacobsen, S. D., et al., Nature 436, 377 (2005).Google Scholar
12 McWhan, D. B., Rice, T. M., and Remeika, J. P., Phys. Rev. Lett. 23, 1384 (1969).Google Scholar
13 Mott, N. F., Metal-Insulator Transitions (Taylor and Franscis, London, 1974).Google Scholar
14 Shim, S.-H., Duffy, T. S., Jeanloz, R., et al., Phys. Rev. B 69, 144107 (2004).Google Scholar
15 Merrill, L. and Bassett, W. A., Rev. Sci. Instrum. 45, 290 (1974).Google Scholar
16 Mao, H. K. and Hemley, R. J., Phil. Trans. R. Soc. Lond. A 354, 1315 (1996).Google Scholar
17 Bell, P. M. and Mao, H. K., Carnegie Inst. Washington Yearb. 80, 404 (1981).Google Scholar
18 Mao, H. K., Xu, J., and Bell, P. M., J. Geophys. Res. 91, B5, 4673 (1986).Google Scholar
19 Mao, H. K., Jephcoat, A. P., Hemley, R. J., et al., Science 239, 1131 (1988).Google Scholar
20 Carpenter, M. A. and Salje, E. K. H., Eur. J. Mineral. 10, 693 (1998).Google Scholar
21 Hemley, R. J., Shu, J., Carpenter, M. A., et al., Solid State Comm. 114, 527 (2000).Google Scholar
22 Mao, H. K., Shu, J., Fei, Y., et al., Phys. Earth Planet. Inter. 96, 135 (1996).Google Scholar
23 Ono, S., Ohishi, Y., and Kikegawa, T., J. Phys.: Condens. Matter 19, 036205 (2007).Google Scholar
24 Yoo, C. S., Maddox, B., Klepeis, J.-H. P., et al., Phys. Rev. Lett. 94, 115502 (2005).Google Scholar
25 Kondo, T., Yagi, T., Syono, Y., et al., J. Appl. Phys. 87, 4153 (2000).Google Scholar
26 Guo, Q., Mao, H. K., Hu, J., et al., J. Phys.: Condens. Matter 14, 11369 (2002).Google Scholar
27 Liu, J. F., He, Y., Chen, W., et al., J. Phys. Chem. C Lett. (2006).Google Scholar