Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T22:05:40.710Z Has data issue: false hasContentIssue false

Pressure-induced Structural Phase Transition of Carbon Nanotubes into New Nanostructured Carbon Solids

Published online by Cambridge University Press:  31 January 2011

Masahiro Sakurai
Affiliation:
sakurai@stat.phys.titech.ac.jp, Tokyo Institute of Technology, Department of Physics, Tokyo, Japan
Susumu Saito
Affiliation:
saito@stat.phys.titech.ac.jp, Tokyo Institute of Technology, Department of Physics, Tokyo, Japan
Get access

Abstract

We study pressure-induced structural phase transition of carbon nanotubes using the constant-pressure tight-binding molecular-dynamics simulation. The systems studied are nanotube bundles composed of (6,6) armchair nanotube and/or (7,4) chiral nanotube, which are reported to be the nanotubes relatively abundant in experimentally purified sample. We find that the nanotube bundles transforms into a new phase that consist of graphitic ribbons and diamond blocks, “graphitic nanoribbon solid”. It is also found that sp3-rich phases obtained from the armchair nanotubes possess an anisotropic network and have high hardness which is comparable to that of cubic diamond. In the case of the bundles containing chiral nanotubes, on the other hand, amorphous diamond phase is obtained. Based on the local-density approximation in the density-functional theory, we also investigate the energetics and electronic structure of some of new carbon phases obtained in the molecular-dynamics study.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Krätschmer, W., Lamb, L. D., Fostiropoulous, K., and Hoffman, D. R., Nature 347, 354 (1990).Google Scholar
2. Iijima, S., Nature 354, 56 (1991).Google Scholar
3. Iwasa, Y., Arima, T., Fleming, R. M., Siegrist, T., Zhou, O., Haddon, R. C., Rothberg, L. J., Lyons, K. B., Carter, H. L. Jr. , Hebard, A. F., Tycko, R., Dabbagh, G., Krajewski, J. J., Thomas, G. A., and Yagi, T., Science 264, 1570 (1994).Google Scholar
4. Núñez-Regueiro, M., Marques, L., Hodeau, J.-L., Bethoux, O., and Perroux, M.: Phys. Rev. Lett. 74, 278 (1995).Google Scholar
5. Hirai, H., Kondo, K., Yoshizawa, N., and Shiraishi, M., Appl. Phys. Lett. 64, 1797 (1994).Google Scholar
6. Hirai, H., Tabira, Y., Kondo, K., Oikawa, T., and ishizawa, N., Phys. Rev. B 52, 6162 (1995).Google Scholar
7. Sato, Y., Yanagi, K., Miyata, Y., Suenaga, K., Kataura, H., and Iijima, S., Nano. Lett. 8, 3151 (2008).Google Scholar
8. Parrinello, M. and Rahman, A., Phys. Rev. Lett. 45, 1196 (1980); J. Appl. Phys. 52, 7182 (1981).Google Scholar
9. Omata, Y., Yamagami, Y., Tadano, K., Miyake, T., and Saito, S., Physica E 29, 454 (2005).Google Scholar
10. Sakurai, M. and Saito, S., Jpn. J. Appl. Phys. (in press).Google Scholar
11. Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964).Google Scholar
12. Kohn, W. and Sham, L. J., Phys. Rev. 140, A1133 (1965).Google Scholar
14. Ceperley, D. M. and Alder, B. J., Phys. Rev. Lett. 45, 566 (1980).Google Scholar
15. Perdew, J. P. and Zunger, A., Phys. Rev. B 23, 5048 (1981).Google Scholar
16. Troullier, N. and Martins, J. L., Phys. Rev. B 43, 1993 (1991).Google Scholar
17. Kleinman, L. and Bylander, D. M., Phys. Rev. Lett. 48, 1425 (1982).Google Scholar
18. Umemoto, K., Saito, S., Barbar, S., Tomanek, D., Phys. Rev.B 64, 193409 (2001).Google Scholar