Published online by Cambridge University Press: 06 May 2015
Sodalite (Na8[AlSiO4]6Cl2), a naturally occurring Cl-containing mineral, has long been regarded as a potential immobilization matrix for the chloride salt wastes arising from pyrochemical reprocessing operations, as it allows for the conditioning of the waste salt as a whole without the need for any pre-treatment. Here the consolidation and densification of Sm-doped sodalite (as an analogue for AnCl3) has been investigated with the aim of producing fully dense (i.e. > 95 % t.d.) ceramic monoliths via conventional cold-press-and-sinter techniques at temperatures of < 1000 °C. Microstructural analysis of pressed and sintered sodalite powders under these conditions is shown to produce poorly sintered, porous, inhomogeneous pellets. However, by the addition of a sodium aluminophosphate glass sintering aid, fully dense Sm-sodalite ceramic monoliths can successfully be produced by sintering at temperatures as low as 800 °C.