Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T01:12:35.556Z Has data issue: false hasContentIssue false

Prevention of burning phenomenon in fabrication of anodic aluminum oxide membranes using a constant current method

Published online by Cambridge University Press:  21 August 2013

Chih -Yao Chen*
Affiliation:
Institute of Materials Science and Engineering, National Central University, Jhong Li, Taiwan
I-Chen Chen*
Affiliation:
Institute of Materials Science and Engineering, National Central University, Jhong Li, Taiwan
*
Get access

Abstract

In this study, we have developed a constant current method for fabrication of AAO membranes with a large interpore distance in order to avoid the burning phenomenon. From our preliminary results, the average growth rate of AAO membranes could increase up to 6 μm/hr with an applied current density of 6 mA/cm2 and the burning phenomenon could be totally avoided at a relatively high anodizing voltage of 175 V. The effect of current density on the growth rate and burning phenomenon was also investigated.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kirkeminde, A., Retsch, M., Wang, Q., Xu, G., Hui, R., Wu, J. and Ren, S., Nanoscale, 4, 421 (2012)Google Scholar
Dobrev, D., Vetter, J., Angert, N., and Neumann, R., Appl. Phys. A: Mater. Sci. Process. 72, 729 (2001)CrossRefGoogle Scholar
Byun, J., Lee, J. I., Kwon, S., Jeon, G., and Kim, J. K., Adv. Mater., 22, 2028 (2010)CrossRefGoogle Scholar
Ono, S., Saito, M., Asoh, H., Electrochimica Acta, 51, 827 (2005)CrossRefGoogle Scholar
Osmanbeyoglu, H. U., Hur, T. B., Kim, H. K., Journal of Membrane Science, 343, 1 (2009)CrossRefGoogle Scholar
Martín, Jaime and Martín-González, Marisol, Nanoscale, 4, 5608 (2012)CrossRefGoogle Scholar
Chen, I. C., Chen, Y. H., Wang, Y. C., Shih, M. H., Appl. Phys. A, 112, 381 (2013)CrossRefGoogle Scholar
Yan, P., Fei, G. T., Shang, G. L., Wu, B. and Zhang, L. D., J. Mater. Chem. C, 1, 1659 (2013)CrossRefGoogle Scholar
Masuda, H. and Fukuda, K., Science, 268, 1466 (1995).CrossRefGoogle Scholar
Masuda, H., Hasegawa, F., and Ono, S., J. Electrochem. Soc., 144, L127 (1997).CrossRefGoogle Scholar
Masuda, H., Yada, K., and Osaka, A., Jpn. J. Appl. Phys. Part 2 37, L1340 (1998).CrossRefGoogle Scholar
Ono, S., Saito, M., Ishiguro, M., and Asoh, H., J. Electrochem. Soc. 151, B473(2004).CrossRefGoogle Scholar
Scott, B.A., Trans. Inst. Met. Finish., 43, 1 (1965) .Google Scholar
Aerts, T., De Graeve, I., and Terryn, H., Electrochim. Acta, 54, 270 (2008).CrossRefGoogle Scholar
Aerts, T., De Graeve, I., Nelissen, G., Deconinck, J., Kubacki, S. Dick, E., and Terryn, H., Corros. Sci., 51, 1482, (2009).CrossRefGoogle Scholar
Aerts, T., De Graeve, I., and Terryn, H., Electrochem. Commun., 11, 2292, (2009).CrossRefGoogle Scholar
De Graeve, I., Terryn, H., Thompson, G., J. Electrochem. Soc., 150, B156, (2003).CrossRefGoogle Scholar
Li, Feiyue, Zhang, Lan, and Metzger, Robert M., Chem. Mater., 10,2470 (1998).CrossRefGoogle Scholar
Chen, W., Wu, J.S., and Xia, X.H., Acs. Nano., 5, 959, (2008)CrossRefGoogle Scholar