Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T01:02:22.879Z Has data issue: false hasContentIssue false

Process Optimization of Ni Nanocrystals Formation Using O2 Plasma Oxidation to Fabricate Low-molecular Organic Nonvolatile Memory

Published online by Cambridge University Press:  01 February 2011

Woo Sik Nam
Affiliation:
ahha50@hanyang.ac.kr, National Program Center for Terabit-level Nonvolatile Memory Development, Electronic engineering, HIT 101 Handangdong Seongdonggu Hanyang University, Seoul, Korea, Seoul, N/A, Korea, Republic of
Gon-Sub Lee
Affiliation:
gslee@hanyang.ac.kr, National Program Center for Terabit-level Nonvolatile Memory Development, Electronic engineering, HIT 101 Handangdong Seongdonggu Hanyang University, Seoul, Korea, Seoul, N/A, Korea, Republic of
Sung Ho Seo
Affiliation:
spatent@hanmail.net, National Program Center for Terabit-level Nonvolatile Memory Development, Electronic engineering, HIT 101 Handangdong Seongdonggu Hanyang University, Seoul, Korea, Seoul, N/A, Korea, Republic of
Jea Gun Park
Affiliation:
parkjgl@hanyang.ac.kr, National Program Center for Terabit-level Nonvolatile Memory Development, Electronic engineering, HIT 101 Handangdong Seongdonggu Hanyang University, Seoul, Korea, Seoul, N/A, Korea, Republic of
Get access

Abstract

We fabricated organic nonvolatile memory with a device structure of Al/Alq3 (aluminum tris (8-hydroxyquinoline))/Ni nanocrystals surrounded by NiO/Alq3/Al. We obtained the best bistable switching characteristics at a 30-nm Alq3 thickness, 0.1-Å/sec evaporation rate, and 10-nm Ni nanocrystal layer thickness. The electrical behavior of the bistable switching devices was obtained by sweeping the voltage from 0 to 10 V. Our devices showed excellent bistable memory characteristics, such as a Vth of 2 V, Vp of 3 V, Ve of 5 V, and Ion/Ioff ratio of greater than 104. We found that a region of negative differential resistance exists between Vp and Ve.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Park, J.G. Lee, G. S. Chae, K. S. Kim, Y. J. Miyata, T. J. Kor. Phys. Soc. 48, 1505 (2006)Google Scholar
2. Ma, L. P. Liu, J. Yang, Y. Appl. Phys. Lett. 80, 2997 (2002)Google Scholar
3. Bozano, L. D. Kean, B. W. Deline, V. R. Salem, J. R. Scott, J. C. Appl. Phys. Lett. 84, 607 (2004)Google Scholar
4. Ma, L. P. Pyo, S. M. Ouyang, J. Xu, Q. Yang, Y. Appl. Phys. Lett. 82, 1419 (2003)Google Scholar
5. Bozano, L. D. Kean, B. W. Beinhoff, M. Carter, K. R. Rice, P. M. Scott, J. C. Adv. Funct. Mater. 15, 1933 (2005)Google Scholar
6. Yang, Y. Ouyang, J. Ma, L. P. Tseng, R. J. Chu, C. W. Adv. Funct. Mater. 16, 1001 (2006)Google Scholar
7. Cho, B. O. Yasue, T. Yoon, H. S. Lee, M. S. Yeo, I. S. Chung, U. I. Moon, J. T. Ryu, B. I. Electron Devices Meeting 2006, IEDM (2006)Google Scholar
8. Chu, C. W. Ouyang, J. Tseng, J. H. Yang, Y. Adv. Mater. 17, 1440 (2005)Google Scholar
9. Tondelier, D. Lmimouni, K. Vuillaume, D. Appl. Phys. Lett. 85, 5763 (2004)Google Scholar
10. Ma, D. Aguiar, M. Freire, J. A. Hümmelgen, I. A., Adv. Mater. 12, 1063 (2000)Google Scholar